[English] 日本語

- PDB-9cph: Structural basis of BAK sequestration by MCL-1 and consequences f... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 9cph | ||||||
---|---|---|---|---|---|---|---|
Title | Structural basis of BAK sequestration by MCL-1 and consequences for apoptosis initiation | ||||||
![]() |
| ||||||
![]() | APOPTOSIS / Anti-apoptosis / Mitochondrial poration / BCL-2 family / Cell fate | ||||||
Function / homology | ![]() Activation and oligomerization of BAK protein / response to mycotoxin / BH domain binding / B cell negative selection / BAK complex / apoptotic process involved in blood vessel morphogenesis / negative regulation of endoplasmic reticulum calcium ion concentration / response to fungus / limb morphogenesis / Release of apoptotic factors from the mitochondria ...Activation and oligomerization of BAK protein / response to mycotoxin / BH domain binding / B cell negative selection / BAK complex / apoptotic process involved in blood vessel morphogenesis / negative regulation of endoplasmic reticulum calcium ion concentration / response to fungus / limb morphogenesis / Release of apoptotic factors from the mitochondria / post-embryonic camera-type eye morphogenesis / endocrine pancreas development / establishment or maintenance of transmembrane electrochemical gradient / positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway / B cell apoptotic process / negative regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway / endoplasmic reticulum calcium ion homeostasis / regulation of mitochondrial membrane permeability / calcium ion transport into cytosol / response to UV-C / fibroblast apoptotic process / mitochondrial fusion / Bcl-2 family protein complex / myeloid cell homeostasis / porin activity / thymocyte apoptotic process / positive regulation of calcium ion transport into cytosol / pore complex / negative regulation of release of cytochrome c from mitochondria / positive regulation of IRE1-mediated unfolded protein response / positive regulation of release of cytochrome c from mitochondria / vagina development / B cell homeostasis / positive regulation of proteolysis / blood vessel remodeling / intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress / Pyroptosis / cellular response to unfolded protein / animal organ regeneration / extrinsic apoptotic signaling pathway in absence of ligand / heat shock protein binding / intrinsic apoptotic signaling pathway / release of cytochrome c from mitochondria / regulation of mitochondrial membrane potential / epithelial cell proliferation / response to gamma radiation / establishment of localization in cell / positive regulation of protein-containing complex assembly / apoptotic signaling pathway / : / response to hydrogen peroxide / cellular response to mechanical stimulus / intrinsic apoptotic signaling pathway in response to DNA damage / cellular response to UV / protein-folding chaperone binding / channel activity / response to ethanol / mitochondrial outer membrane / transmembrane transporter binding / regulation of cell cycle / positive regulation of apoptotic process / protein heterodimerization activity / response to xenobiotic stimulus / negative regulation of cell population proliferation / negative regulation of gene expression / apoptotic process / protein-containing complex binding / endoplasmic reticulum / protein homodimerization activity / mitochondrion / metal ion binding / identical protein binding / cytosol Similarity search - Function | ||||||
Biological species | ![]() | ||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.34 Å | ||||||
![]() | Uchikawa, E. / Myasnikov, A. / Dey, R. / Moldoveanu, T. | ||||||
Funding support | ![]()
| ||||||
![]() | ![]() Title: Structural basis of BAK sequestration by MCL-1 in apoptosis. Authors: Shagun Srivastava / Giridhar Sekar / Adedolapo Ojoawo / Anup Aggarwal / Elisabeth Ferreira / Emiko Uchikawa / Meek Yang / Christy R Grace / Raja Dey / Yi-Lun Lin / Cristina D Guibao / ...Authors: Shagun Srivastava / Giridhar Sekar / Adedolapo Ojoawo / Anup Aggarwal / Elisabeth Ferreira / Emiko Uchikawa / Meek Yang / Christy R Grace / Raja Dey / Yi-Lun Lin / Cristina D Guibao / Seetharaman Jayaraman / Somnath Mukherjee / Anthony A Kossiakoff / Bin Dong / Alexander Myasnikov / Tudor Moldoveanu / ![]() ![]() Abstract: Apoptosis controls cell fate, ensuring tissue homeostasis and promoting disease when dysregulated. The rate-limiting step in apoptosis is mitochondrial poration by the effector B cell lymphoma 2 (BCL- ...Apoptosis controls cell fate, ensuring tissue homeostasis and promoting disease when dysregulated. The rate-limiting step in apoptosis is mitochondrial poration by the effector B cell lymphoma 2 (BCL-2) family proteins BAK and BAX, which are activated by initiator BCL-2 homology 3 (BH3)-only proteins (e.g., BIM) and inhibited by guardian BCL-2 family proteins (e.g., MCL-1). We integrated structural, biochemical, and pharmacological approaches to characterize the human prosurvival MCL-1:BAK complex assembled from their BCL-2 globular core domains. We reveal a canonical interaction with BAK BH3 bound to the hydrophobic groove of MCL-1 and disordered and highly dynamic BAK regions outside the complex interface. We predict similar conformations of activated effectors in complex with other guardians or effectors. The MCL-1:BAK complex is a major cancer drug target. We show that MCL-1 inhibitors are inefficient in neutralizing the MCL-1:BAK complex, requiring high doses to initiate apoptosis. Our study underscores the need to design superior clinical candidate MCL-1 inhibitors. | ||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 359 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 293.7 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 827.8 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 845.7 KB | Display | |
Data in XML | ![]() | 38.2 KB | Display | |
Data in CIF | ![]() | 56.6 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 45803MC ![]() 9cpeC ![]() 9cpfC ![]() 9cpnC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 57152.789 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|---|
#2: Protein/peptide | Mass: 2366.679 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
#3: Antibody | Mass: 24534.371 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
#4: Antibody | Mass: 23109.719 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
#5: Polysaccharide | alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose |
Has ligand of interest | Y |
Has protein modification | Y |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: hetero-tetrameric Complex of Sab11M heavy and long chain, MBP_MCL1 fusion protein, and BAK-BH3 Type: COMPLEX / Entity ID: #1-#4 / Source: RECOMBINANT |
---|---|
Source (natural) | Organism: ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 7 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: TFS KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2500 nm / Nominal defocus min: 500 nm |
Image recording | Electron dose: 40 e/Å2 / Film or detector model: TFS FALCON 4i (4k x 4k) |
-
Processing
EM software | Name: PHENIX / Version: 1.20.1_4487: / Category: model refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
3D reconstruction | Resolution: 3.34 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 150154 / Symmetry type: POINT | ||||||||||||||||||||||||
Refine LS restraints |
|