[English] 日本語
Yorodumi
- PDB-8thc: Structure of the Saccharomyces cerevisiae clamp unloader Elg1-RFC... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8thc
TitleStructure of the Saccharomyces cerevisiae clamp unloader Elg1-RFC bound to a cracked PCNA
Components
  • (Replication factor C subunit ...) x 4
  • ELG1 isoform 1
  • Proliferating cell nuclear antigen
KeywordsREPLICATION / DNA replication / DNA sliding clamp / PCNA clamp / clamp loader/unloader / Elg1-RFC unloader
Function / homology
Function and homology information


DNA clamp unloading / Gap-filling DNA repair synthesis and ligation in GG-NER / Ctf18 RFC-like complex / Rad17 RFC-like complex / DNA replication factor C complex / Elg1 RFC-like complex / Polymerase switching / DNA clamp loader activity / Translesion Synthesis by POLH / Translesion synthesis by REV1 ...DNA clamp unloading / Gap-filling DNA repair synthesis and ligation in GG-NER / Ctf18 RFC-like complex / Rad17 RFC-like complex / DNA replication factor C complex / Elg1 RFC-like complex / Polymerase switching / DNA clamp loader activity / Translesion Synthesis by POLH / Translesion synthesis by REV1 / Translesion synthesis by POLK / Translesion synthesis by POLI / DNA replication checkpoint signaling / Activation of ATR in response to replication stress / Termination of translesion DNA synthesis / sister chromatid cohesion / mitotic sister chromatid cohesion / DNA polymerase processivity factor activity / leading strand elongation / regulation of DNA replication / Gap-filling DNA repair synthesis and ligation in TC-NER / Dual incision in TC-NER / mismatch repair / DNA damage checkpoint signaling / DNA-templated DNA replication / DNA replication / DNA repair / ATP hydrolysis activity / DNA binding / ATP binding / nucleus / cytosol
Similarity search - Function
Replication factor C, C-terminal / Replication factor C C-terminal domain / : / DNA polymerase III, delta subunit / DNA polymerase III, clamp loader complex, gamma/delta/delta subunit, C-terminal / Proliferating cell nuclear antigen signature 2. / Proliferating cell nuclear antigen, PCNA, conserved site / Proliferating cell nuclear antigen signature 1. / Proliferating cell nuclear antigen, PCNA / Proliferating cell nuclear antigen, PCNA, N-terminal ...Replication factor C, C-terminal / Replication factor C C-terminal domain / : / DNA polymerase III, delta subunit / DNA polymerase III, clamp loader complex, gamma/delta/delta subunit, C-terminal / Proliferating cell nuclear antigen signature 2. / Proliferating cell nuclear antigen, PCNA, conserved site / Proliferating cell nuclear antigen signature 1. / Proliferating cell nuclear antigen, PCNA / Proliferating cell nuclear antigen, PCNA, N-terminal / Proliferating cell nuclear antigen, PCNA, C-terminal / Proliferating cell nuclear antigen, N-terminal domain / Proliferating cell nuclear antigen, C-terminal domain / : / ATPase family associated with various cellular activities (AAA) / ATPase, AAA-type, core / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
ADENOSINE-5'-DIPHOSPHATE / PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER / Proliferating cell nuclear antigen / ELG1 isoform 1 / Replication factor C subunit 5 / Replication factor C subunit 3 / Replication factor C subunit 4 / Replication factor C subunit 2
Similarity search - Component
Biological speciesSaccharomyces cerevisiae (brewer's yeast)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.67 Å
AuthorsZheng, F. / Yao, Y.N. / Georgescu, R. / O'Donnell, M.E. / Li, H.
Funding support United States, 3items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM131754 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM115809 United States
Howard Hughes Medical Institute (HHMI) United States
CitationJournal: Sci Adv / Year: 2024
Title: Structure of the PCNA unloader Elg1-RFC.
Authors: Fengwei Zheng / Nina Y Yao / Roxana E Georgescu / Huilin Li / Michael E O'Donnell /
Abstract: During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA heteropentamer replication factor C (RFC). ...During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA heteropentamer replication factor C (RFC). PCNA encircling duplex DNA is quite stable and is removed from DNA by the dedicated clamp unloader Elg1-RFC. Here, we show the cryo-EM structure of Elg1-RFC in various states with PCNA. The structures reveal essential features of Elg1-RFC that explain how it is dedicated to PCNA unloading. Specifically, Elg1 contains two external loops that block opening of the Elg1-RFC complex for DNA binding, and an "Elg1 plug" domain that fills the central DNA binding chamber, thereby reinforcing the exclusive PCNA unloading activity of Elg1-RFC. Elg1-RFC was capable of unloading PCNA using non-hydrolyzable AMP-PNP. Both RFC and Elg1-RFC could remove PCNA from covalently closed circular DNA, indicating that PCNA unloading occurs by a mechanism that is distinct from PCNA loading. Implications for the PCNA unloading mechanism are discussed.
History
DepositionJul 14, 2023Deposition site: RCSB / Processing site: RCSB
Revision 1.0May 22, 2024Provider: repository / Type: Initial release
Revision 1.1May 29, 2024Group: Database references / Category: citation / citation_author
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.identifier_ORCID / _citation_author.name

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: ELG1 isoform 1
B: Replication factor C subunit 4
C: Replication factor C subunit 3
D: Replication factor C subunit 2
E: Replication factor C subunit 5
F: Proliferating cell nuclear antigen
G: Proliferating cell nuclear antigen
H: Proliferating cell nuclear antigen
hetero molecules


Theoretical massNumber of molelcules
Total (without water)335,12116
Polymers332,5288
Non-polymers2,5938
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Protein , 2 types, 4 molecules AFGH

#1: Protein ELG1 isoform 1


Mass: 91391.445 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast)
Gene: ELG1 / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A8H4F7G7
#6: Protein Proliferating cell nuclear antigen


Mass: 29102.203 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast)
Gene: PCNA / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6B7JGY6

-
Replication factor C subunit ... , 4 types, 4 molecules BCDE

#2: Protein Replication factor C subunit 4 / Replication factor C4 / Activator 1 37 kDa subunit


Mass: 36201.039 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast)
Gene: RFC4, YOL094C, O0923 / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: P40339
#3: Protein Replication factor C subunit 3 / Replication factor C3 / Activator 1 40 kDa subunit


Mass: 37841.051 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast)
Gene: RFC3, YNL290W, N0533 / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: P38629
#4: Protein Replication factor C subunit 2 / Replication factor C2 / Activator 1 41 kDa subunit


Mass: 39794.473 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast)
Gene: RFC2, YJR068W, J1808 / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: P40348
#5: Protein Replication factor C subunit 5 / Replication factor C5 / Activator 1 40 kDa subunit


Mass: 39993.582 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast)
Gene: RFC5, YBR087W, YBR0810 / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: P38251

-
Non-polymers , 3 types, 8 molecules

#7: Chemical
ChemComp-AGS / PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER / ATP-GAMMA-S / ADENOSINE 5'-(3-THIOTRIPHOSPHATE) / ADENOSINE 5'-(GAMMA-THIOTRIPHOSPHATE) / ADENOSINE-5'-DIPHOSPHATE MONOTHIOPHOSPHATE


Mass: 523.247 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C10H16N5O12P3S / Comment: ATP-gamma-S, energy-carrying molecule analogue*YM
#8: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 3 / Source method: obtained synthetically / Formula: Mg
#9: Chemical ChemComp-ADP / ADENOSINE-5'-DIPHOSPHATE


Mass: 427.201 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C10H15N5O10P2 / Comment: ADP, energy-carrying molecule*YM

-
Details

Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeEntity IDParent-IDSource
1PCNA clamp unloader Elg1-RFCCOMPLEX#1-#50MULTIPLE SOURCES
2PCNA clamp unloader Elg1-RFCCOMPLEX#1-#51RECOMBINANT
3PCNA clampCOMPLEX#61RECOMBINANT
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
22Saccharomyces cerevisiae (brewer's yeast)4932
23Saccharomyces cerevisiae (brewer's yeast)4932
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 1800 nm / Nominal defocus min: 1100 nm
Image recordingElectron dose: 60 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

CTF correctionType: NONE
3D reconstructionResolution: 3.67 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 107853 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00220757
ELECTRON MICROSCOPYf_angle_d0.60328083
ELECTRON MICROSCOPYf_dihedral_angle_d5.0842775
ELECTRON MICROSCOPYf_chiral_restr0.0423296
ELECTRON MICROSCOPYf_plane_restr0.0053557

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more