[English] 日本語
Yorodumi
- PDB-8sk7: Cryo-EM structure of designed Influenza HA binder, HA_20, bound t... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8sk7
TitleCryo-EM structure of designed Influenza HA binder, HA_20, bound to Influenza HA (Strain: Iowa43)
Components
  • HA_20 minibinder (RFdiffusion-designed)
  • Hemagglutinin
  • Hemagglutinin HA1 chain
KeywordsDE NOVO PROTEIN/Viral Protein / flu / influenza / hemagglutinin / HA / Iowa43 / HA_20 / DE NOVO PROTEIN / minibinder / binder / designed protein / fusion protein / glycoprotein / DE NOVO PROTEIN-Viral Protein complex
Function / homology
Function and homology information


viral budding from plasma membrane / clathrin-dependent endocytosis of virus by host cell / host cell surface receptor binding / fusion of virus membrane with host plasma membrane / fusion of virus membrane with host endosome membrane / viral envelope / virion attachment to host cell / host cell plasma membrane / virion membrane / membrane
Similarity search - Function
Haemagglutinin, influenzavirus A / Haemagglutinin, HA1 chain, alpha/beta domain superfamily / Haemagglutinin / Haemagglutinin, influenzavirus A/B / Viral capsid/haemagglutinin protein
Similarity search - Domain/homology
Biological speciesInfluenza A virus
unidentified (others)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.93 Å
AuthorsBorst, A.J. / Bennett, N.R.
Funding support United States, 1items
OrganizationGrant numberCountry
Howard Hughes Medical Institute (HHMI) United States
CitationJournal: Nature / Year: 2023
Title: De novo design of protein structure and function with RFdiffusion.
Authors: Joseph L Watson / David Juergens / Nathaniel R Bennett / Brian L Trippe / Jason Yim / Helen E Eisenach / Woody Ahern / Andrew J Borst / Robert J Ragotte / Lukas F Milles / Basile I M Wicky / ...Authors: Joseph L Watson / David Juergens / Nathaniel R Bennett / Brian L Trippe / Jason Yim / Helen E Eisenach / Woody Ahern / Andrew J Borst / Robert J Ragotte / Lukas F Milles / Basile I M Wicky / Nikita Hanikel / Samuel J Pellock / Alexis Courbet / William Sheffler / Jue Wang / Preetham Venkatesh / Isaac Sappington / Susana Vázquez Torres / Anna Lauko / Valentin De Bortoli / Emile Mathieu / Sergey Ovchinnikov / Regina Barzilay / Tommi S Jaakkola / Frank DiMaio / Minkyung Baek / David Baker /
Abstract: There has been considerable recent progress in designing new proteins using deep-learning methods. Despite this progress, a general deep-learning framework for protein design that enables solution of ...There has been considerable recent progress in designing new proteins using deep-learning methods. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
History
DepositionApr 18, 2023Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jun 14, 2023Provider: repository / Type: Initial release
Revision 1.1Jul 12, 2023Group: Database references / Category: citation / citation_author / Item: _citation.title
Revision 1.2Jul 26, 2023Group: Database references / Category: citation / citation_author
Item: _citation.journal_abbrev / _citation.journal_id_ISSN ..._citation.journal_abbrev / _citation.journal_id_ISSN / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _citation_author.identifier_ORCID
Revision 1.3Sep 13, 2023Group: Data collection / Database references
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / citation / citation_author
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation_author.identifier_ORCID

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Hemagglutinin HA1 chain
G: Hemagglutinin
X: HA_20 minibinder (RFdiffusion-designed)
B: Hemagglutinin HA1 chain
H: Hemagglutinin
Y: HA_20 minibinder (RFdiffusion-designed)
C: Hemagglutinin HA1 chain
I: Hemagglutinin
Z: HA_20 minibinder (RFdiffusion-designed)
hetero molecules


Theoretical massNumber of molelcules
Total (without water)215,50327
Polymers209,8169
Non-polymers5,68718
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, cryoEM, surface plasmon resonance, octet
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

-
Protein , 3 types, 9 molecules ABCGHIXYZ

#1: Protein Hemagglutinin HA1 chain


Mass: 35923.340 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Influenza A virus / Gene: HA / Production host: Homo sapiens (human) / References: UniProt: A4GCK8
#2: Protein Hemagglutinin


Mass: 26623.463 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Influenza A virus / Gene: HA / Production host: Homo sapiens (human) / References: UniProt: A4GCK8
#3: Protein HA_20 minibinder (RFdiffusion-designed)


Mass: 7391.848 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) unidentified (others) / Production host: Escherichia coli (E. coli)

-
Sugars , 3 types, 18 molecules

#4: Polysaccharide beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta- ...beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 586.542 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/2,3,2/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5]/1-1-2/a4-b1_b4-c1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-Manp]{}}}LINUCSPDB-CARE
#5: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 424.401 Da / Num. of mol.: 3 / Source method: obtained synthetically
DescriptorTypeProgram
DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/1,2,1/[a2122h-1b_1-5_2*NCC/3=O]/1-1/a4-b1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}}LINUCSPDB-CARE
#6: Sugar
ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 12 / Source method: obtained synthetically / Formula: C8H15NO6 / Feature type: SUBJECT OF INVESTIGATION
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0

-
Details

Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Influenza HA (Iowa43) bound to RFdiffusion designed minibinder, HA_20
Type: COMPLEX / Entity ID: #1-#3 / Source: RECOMBINANT
Source (natural)Organism: Influenza A virus
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: TFS KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 1700 nm / Nominal defocus min: 800 nm
Image recordingElectron dose: 64.273 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)

-
Processing

CTF correctionType: NONE
3D reconstructionResolution: 2.93 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 308846 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00313407
ELECTRON MICROSCOPYf_angle_d0.44318183
ELECTRON MICROSCOPYf_dihedral_angle_d9.9834851
ELECTRON MICROSCOPYf_chiral_restr0.0422097
ELECTRON MICROSCOPYf_plane_restr0.0022304

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more