Mitotic Telophase/Cytokinesis / regulation of protein localization to cell cortex / Mitotic Metaphase/Anaphase Transition / synaptonemal complex disassembly / Golgi inheritance / regulation of protein binding / Activation of NIMA Kinases NEK9, NEK6, NEK7 / nuclear membrane disassembly / homologous chromosome segregation / polo kinase ...Mitotic Telophase/Cytokinesis / regulation of protein localization to cell cortex / Mitotic Metaphase/Anaphase Transition / synaptonemal complex disassembly / Golgi inheritance / regulation of protein binding / Activation of NIMA Kinases NEK9, NEK6, NEK7 / nuclear membrane disassembly / homologous chromosome segregation / polo kinase / mitotic nuclear membrane disassembly / Phosphorylation of Emi1 / protein localization to nuclear envelope / metaphase/anaphase transition of mitotic cell cycle / double-strand break repair via alternative nonhomologous end joining / synaptonemal complex / female meiosis chromosome segregation / anaphase-promoting complex binding / Phosphorylation of the APC/C / outer kinetochore / negative regulation of cyclin-dependent protein serine/threonine kinase activity / regulation of mitotic spindle assembly / positive regulation of ubiquitin protein ligase activity / microtubule bundle formation / mitotic chromosome condensation / Polo-like kinase mediated events / Golgi Cisternae Pericentriolar Stack Reorganization / centrosome cycle / regulation of mitotic metaphase/anaphase transition / positive regulation of ubiquitin-protein transferase activity / sister chromatid cohesion / regulation of mitotic cell cycle phase transition / mitotic spindle assembly checkpoint signaling / mitotic spindle pole / regulation of anaphase-promoting complex-dependent catabolic process / mitotic G2 DNA damage checkpoint signaling / establishment of mitotic spindle orientation / positive regulation of proteolysis / mitotic sister chromatid segregation / mitotic cytokinesis / centriolar satellite / chromosome, centromeric region / negative regulation of double-strand break repair via homologous recombination / spindle midzone / Regulation of MITF-M-dependent genes involved in cell cycle and proliferation / Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal / Cyclin A/B1/B2 associated events during G2/M transition / Mitotic Prometaphase / EML4 and NUDC in mitotic spindle formation / Loss of Nlp from mitotic centrosomes / Loss of proteins required for interphase microtubule organization from the centrosome / Recruitment of mitotic centrosome proteins and complexes / Deposition of new CENPA-containing nucleosomes at the centromere / protein localization to chromatin / Recruitment of NuMA to mitotic centrosomes / Anchoring of the basal body to the plasma membrane / regulation of mitotic cell cycle / Resolution of Sister Chromatid Cohesion / centriole / AURKA Activation by TPX2 / mitotic spindle organization / Condensation of Prophase Chromosomes / regulation of cytokinesis / positive regulation of peptidyl-threonine phosphorylation / RHO GTPases Activate Formins / protein destabilization / establishment of protein localization / APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1 / kinetochore / spindle pole / positive regulation of protein localization to nucleus / spindle / Separation of Sister Chromatids / The role of GTSE1 in G2/M progression after G2 checkpoint / G2/M transition of mitotic cell cycle / microtubule cytoskeleton / Regulation of PLK1 Activity at G2/M Transition / double-strand break repair / positive regulation of proteasomal ubiquitin-dependent protein catabolic process / mitotic cell cycle / midbody / peptidyl-serine phosphorylation / microtubule binding / regulation of cell cycle / protein kinase activity / protein ubiquitination / protein phosphorylation / cell division / protein serine kinase activity / protein serine/threonine kinase activity / centrosome / chromatin / negative regulation of apoptotic process / protein kinase binding / negative regulation of transcription by RNA polymerase II / magnesium ion binding / DNA binding / nucleoplasm / ATP binding / identical protein binding Similarity search - Function
SANT associated / KNL2-like / SANTA (SANT Associated) / Polo-like kinase 1, catalytic domain / Second polo-box domain / First polo-box domain / POLO box domain superfamily / POLO box duplicated region / POLO box domain / POLO box domain profile. ...SANT associated / KNL2-like / SANTA (SANT Associated) / Polo-like kinase 1, catalytic domain / Second polo-box domain / First polo-box domain / POLO box domain superfamily / POLO box duplicated region / POLO box domain / POLO box domain profile. / SANT domain profile. / SANT domain / SANT SWI3, ADA2, N-CoR and TFIIIB'' DNA-binding domains / SANT/Myb domain / Homeobox-like domain superfamily / Serine/threonine-protein kinase, active site / Serine/Threonine protein kinases active-site signature. / Protein kinase domain / Serine/Threonine protein kinases, catalytic domain / Protein kinase, ATP binding site / Protein kinases ATP-binding region signature. / Protein kinase domain profile. / Protein kinase domain / Protein kinase-like domain superfamily Similarity search - Domain/homology
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi