[English] 日本語
Yorodumi
- PDB-8fvr: CryoEM structure of E.coli transcription elongation complex -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8fvr
TitleCryoEM structure of E.coli transcription elongation complex
Components
  • (DNA (53-MER)) x 2
  • (DNA-directed RNA polymerase subunit ...Polymerase) x 4
  • RNA (16-MER)
KeywordsTRANSCRIPTION/DNA/RNA / Transcription elongation / TRANSCRIPTION-DNA-RNA complex
Function / homology
Function and homology information


RNA polymerase complex / submerged biofilm formation / cellular response to cell envelope stress / cytosolic DNA-directed RNA polymerase complex / regulation of DNA-templated transcription initiation / bacterial-type flagellum assembly / bacterial-type flagellum-dependent cell motility / nitrate assimilation / transcription elongation factor complex / regulation of DNA-templated transcription elongation ...RNA polymerase complex / submerged biofilm formation / cellular response to cell envelope stress / cytosolic DNA-directed RNA polymerase complex / regulation of DNA-templated transcription initiation / bacterial-type flagellum assembly / bacterial-type flagellum-dependent cell motility / nitrate assimilation / transcription elongation factor complex / regulation of DNA-templated transcription elongation / transcription antitermination / cell motility / DNA-templated transcription initiation / ribonucleoside binding / DNA-directed 5'-3' RNA polymerase activity / DNA-directed RNA polymerase / response to heat / protein-containing complex assembly / intracellular iron ion homeostasis / protein dimerization activity / response to antibiotic / magnesium ion binding / DNA binding / zinc ion binding / membrane / cytosol / cytoplasm
Similarity search - Function
DNA-directed RNA polymerase, omega subunit / DNA-directed RNA polymerase, subunit beta-prime, bacterial type / DNA-directed RNA polymerase, beta subunit, external 1 domain superfamily / DNA-directed RNA polymerase, beta subunit, external 1 domain / RNA polymerase beta subunit external 1 domain / RNA polymerase, alpha subunit, C-terminal / Bacterial RNA polymerase, alpha chain C terminal domain / DNA-directed RNA polymerase, alpha subunit / DNA-directed RNA polymerase beta subunit, bacterial-type / RNA polymerase Rpb6 ...DNA-directed RNA polymerase, omega subunit / DNA-directed RNA polymerase, subunit beta-prime, bacterial type / DNA-directed RNA polymerase, beta subunit, external 1 domain superfamily / DNA-directed RNA polymerase, beta subunit, external 1 domain / RNA polymerase beta subunit external 1 domain / RNA polymerase, alpha subunit, C-terminal / Bacterial RNA polymerase, alpha chain C terminal domain / DNA-directed RNA polymerase, alpha subunit / DNA-directed RNA polymerase beta subunit, bacterial-type / RNA polymerase Rpb6 / RNA polymerase, subunit omega/Rpo6/RPB6 / RNA polymerase Rpb6 / RNA polymerase Rpb1, domain 3 superfamily / RNA polymerase Rpb1, clamp domain superfamily / RPB6/omega subunit-like superfamily / DNA-directed RNA polymerase, subunit beta-prime / RNA polymerase Rpb1, domain 3 / RNA polymerase Rpb1, domain 3 / RNA polymerase Rpb2, domain 2 superfamily / RNA polymerase Rpb1, domain 1 / RNA polymerase Rpb1, domain 1 / RNA polymerase, alpha subunit / RNA polymerase Rpb1, domain 4 / RNA polymerase Rpb1, domain 2 / RNA polymerase Rpb1, domain 4 / RNA polymerase, N-terminal / RNA polymerase Rpb1, funnel domain superfamily / RNA polymerase I subunit A N-terminus / RNA polymerase Rpb1, domain 5 / RNA polymerase Rpb1, domain 5 / RNA polymerase, beta subunit, protrusion / RNA polymerase beta subunit / DNA-directed RNA polymerase, insert domain / DNA-directed RNA polymerase, RpoA/D/Rpb3-type / RNA polymerase Rpb3/RpoA insert domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerases D / DNA-directed RNA polymerase, insert domain superfamily / RNA polymerase, RBP11-like subunit / RNA polymerase Rpb2, domain 2 / RNA polymerase Rpb2, domain 2 / RNA polymerase, beta subunit, conserved site / RNA polymerase Rpb2, domain 7 / RNA polymerase Rpb2, domain 3 / RNA polymerase Rpb2, OB-fold / RNA polymerase Rpb2, domain 7 / RNA polymerase Rpb2, domain 3 / RNA polymerases beta chain signature. / DNA-directed RNA polymerase, subunit 2, hybrid-binding domain / DNA-directed RNA polymerase, subunit 2 / DNA-directed RNA polymerase, subunit 2, hybrid-binding domain superfamily / RNA polymerase Rpb2, domain 6
Similarity search - Domain/homology
DNA / DNA (> 10) / RNA / RNA (> 10) / DNA-directed RNA polymerase subunit alpha / DNA-directed RNA polymerase subunit omega / DNA-directed RNA polymerase subunit beta' / DNA-directed RNA polymerase subunit beta
Similarity search - Component
Biological speciesEscherichia coli K-12 (bacteria)
Escherichia coli (E. coli)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.42 Å
AuthorsDuan, W. / Serganov, A.
Funding support United States, 5items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM088118-09 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)2R01GM112940 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM126891 United States
Blavatnik Family Foundation United States
Howard Hughes Medical Institute (HHMI) United States
CitationJournal: Nat Struct Mol Biol / Year: 2023
Title: Control of transcription elongation and DNA repair by alarmone ppGpp.
Authors: Jacob W Weaver / Sergey Proshkin / Wenqian Duan / Vitaly Epshtein / Manjunath Gowder / Binod K Bharati / Elena Afanaseva / Alexander Mironov / Alexander Serganov / Evgeny Nudler /
Abstract: Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More ...Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.
History
DepositionJan 19, 2023Deposition site: RCSB / Processing site: RCSB
Revision 1.0Apr 5, 2023Provider: repository / Type: Initial release
Revision 1.1Apr 12, 2023Group: Database references / Category: citation / citation_author
Item: _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.name
Revision 1.2May 31, 2023Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first / _citation.page_last

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
D: DNA-directed RNA polymerase subunit alpha
E: DNA-directed RNA polymerase subunit alpha
F: DNA-directed RNA polymerase subunit beta
G: DNA-directed RNA polymerase subunit beta'
H: DNA-directed RNA polymerase subunit omega
A: DNA (53-MER)
C: RNA (16-MER)
B: DNA (53-MER)
hetero molecules


Theoretical massNumber of molelcules
Total (without water)428,55311
Polymers428,3988
Non-polymers1553
Water3,621201
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
DNA-directed RNA polymerase subunit ... , 4 types, 5 molecules DEFGH

#1: Protein DNA-directed RNA polymerase subunit alpha / Polymerase / RNAP subunit alpha / RNA polymerase subunit alpha / Transcriptase subunit alpha


Mass: 36558.680 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli K-12 (bacteria) / Gene: rpoA, pez, phs, sez, b3295, JW3257 / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0A7Z4, DNA-directed RNA polymerase
#2: Protein DNA-directed RNA polymerase subunit beta / Polymerase / RNAP subunit beta / RNA polymerase subunit beta / Transcriptase subunit beta


Mass: 150820.875 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli K-12 (bacteria)
Gene: rpoB, groN, nitB, rif, ron, stl, stv, tabD, b3987, JW3950
Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0A8V2, DNA-directed RNA polymerase
#3: Protein DNA-directed RNA polymerase subunit beta' / Polymerase / RNAP subunit beta' / RNA polymerase subunit beta' / Transcriptase subunit beta'


Mass: 156504.969 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli K-12 (bacteria) / Gene: rpoC, tabB, b3988, JW3951 / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0A8T7, DNA-directed RNA polymerase
#4: Protein DNA-directed RNA polymerase subunit omega / Polymerase / RNAP omega subunit / RNA polymerase omega subunit / Transcriptase subunit omega


Mass: 10249.547 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli K-12 (bacteria) / Gene: rpoZ, b3649, JW3624 / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0A800, DNA-directed RNA polymerase

-
DNA chain , 2 types, 2 molecules AB

#5: DNA chain DNA (53-MER)


Mass: 16211.382 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Escherichia coli (E. coli)
#7: DNA chain DNA (53-MER)


Mass: 16269.433 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Escherichia coli (E. coli)

-
RNA chain , 1 types, 1 molecules C

#6: RNA chain RNA (16-MER)


Mass: 5224.208 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Escherichia coli (E. coli)

-
Non-polymers , 3 types, 204 molecules

#8: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Zn
#9: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Mg
#10: Water ChemComp-HOH / water / Water


Mass: 18.015 Da / Num. of mol.: 201 / Source method: isolated from a natural source / Formula: H2O

-
Details

Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: E. coli transcription elongation complex (EC) / Type: COMPLEX / Entity ID: #1-#7 / Source: MULTIPLE SOURCES
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
21Escherichia coli K-12 (bacteria)83333
31Escherichia coli (E. coli)562
Source (recombinant)Organism: Escherichia coli BL21(DE3) (bacteria)
Buffer solutionpH: 8
Details: 20 mM HEPES, pH 8.0, 150 mM NaCl, 10 mM MgCl2, 10 uM ZnCl2, 5 mM DTT
SpecimenConc.: 6.5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: GOLD / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 283.15 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal magnification: 105000 X / Nominal defocus max: 1900 nm / Nominal defocus min: 900 nm / Cs: 2.7 mm / C2 aperture diameter: 70 µm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Temperature (max): 79.95 K / Temperature (min): 79.95 K / Residual tilt: 0.05 mradians
Image recordingAverage exposure time: 2 sec. / Electron dose: 59.07 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Num. of grids imaged: 1 / Num. of real images: 3298
EM imaging opticsEnergyfilter name: GIF Bioquantum / Energyfilter slit width: 20 eV
Image scansSampling size: 5 µm / Width: 5760 / Height: 4092

-
Processing

SoftwareName: PHENIX / Version: 1.20.1_4487: / Classification: refinement
EM software
IDNameVersionCategory
2Leginon3.5image acquisition
7UCSF Chimerav1.15model fitting
8Cootv0.8.9.2model fitting
9PHENIXv1.17.1model fitting
11Cootv0.8.9.2model refinement
12PHENIXv1.17.1model refinement
15cryoSPARCclassification
16cryoSPARC3D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 786069
Details: In total, 786,069 particles were picked in template-free mode
SymmetryPoint symmetry: C1 (asymmetric)
3D reconstructionResolution: 2.42 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 212142 / Num. of class averages: 70 / Symmetry type: POINT
Atomic model buildingProtocol: RIGID BODY FIT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more