[English] 日本語
Yorodumi
- PDB-8ac2: RNA polymerase- post-terminated, open clamp state -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8ac2
TitleRNA polymerase- post-terminated, open clamp state
Components
  • (DNA-directed RNA polymerase subunit ...Polymerase) x 4
  • DNA Non-template strand
  • DNA Template strand
KeywordsTRANSCRIPTION / RNA polymerase / transcriptional pausing / transcription termination / regulatory RNA
Function / homology
Function and homology information


RNA polymerase complex / submerged biofilm formation / cellular response to cell envelope stress / cytosolic DNA-directed RNA polymerase complex / regulation of DNA-templated transcription initiation / bacterial-type flagellum assembly / bacterial-type flagellum-dependent cell motility / nitrate assimilation / transcription elongation factor complex / DNA-directed RNA polymerase complex ...RNA polymerase complex / submerged biofilm formation / cellular response to cell envelope stress / cytosolic DNA-directed RNA polymerase complex / regulation of DNA-templated transcription initiation / bacterial-type flagellum assembly / bacterial-type flagellum-dependent cell motility / nitrate assimilation / transcription elongation factor complex / DNA-directed RNA polymerase complex / regulation of DNA-templated transcription elongation / transcription antitermination / cell motility / DNA-templated transcription initiation / ribonucleoside binding / DNA-directed 5'-3' RNA polymerase activity / DNA-directed RNA polymerase / response to heat / protein-containing complex assembly / intracellular iron ion homeostasis / protein dimerization activity / response to antibiotic / DNA-templated transcription / magnesium ion binding / DNA binding / zinc ion binding / membrane / cytosol / cytoplasm
Similarity search - Function
DNA-directed RNA polymerase, omega subunit / DNA-directed RNA polymerase, subunit beta-prime, bacterial type / DNA-directed RNA polymerase, beta subunit, external 1 domain superfamily / DNA-directed RNA polymerase, beta subunit, external 1 domain / RNA polymerase beta subunit external 1 domain / RNA polymerase, alpha subunit, C-terminal / Bacterial RNA polymerase, alpha chain C terminal domain / DNA-directed RNA polymerase, alpha subunit / DNA-directed RNA polymerase beta subunit, bacterial-type / RNA polymerase Rpb6 ...DNA-directed RNA polymerase, omega subunit / DNA-directed RNA polymerase, subunit beta-prime, bacterial type / DNA-directed RNA polymerase, beta subunit, external 1 domain superfamily / DNA-directed RNA polymerase, beta subunit, external 1 domain / RNA polymerase beta subunit external 1 domain / RNA polymerase, alpha subunit, C-terminal / Bacterial RNA polymerase, alpha chain C terminal domain / DNA-directed RNA polymerase, alpha subunit / DNA-directed RNA polymerase beta subunit, bacterial-type / RNA polymerase Rpb6 / RNA polymerase, subunit omega/Rpo6/RPB6 / RNA polymerase Rpb6 / RNA polymerase Rpb1, domain 3 superfamily / RNA polymerase Rpb1, clamp domain superfamily / RPB6/omega subunit-like superfamily / DNA-directed RNA polymerase, subunit beta-prime / RNA polymerase Rpb1, domain 3 / RNA polymerase Rpb1, domain 3 / RNA polymerase Rpb2, domain 2 superfamily / RNA polymerase Rpb1, domain 1 / RNA polymerase Rpb1, domain 1 / RNA polymerase, alpha subunit / RNA polymerase Rpb1, domain 4 / RNA polymerase Rpb1, domain 2 / RNA polymerase Rpb1, domain 4 / RNA polymerase, N-terminal / RNA polymerase Rpb1, funnel domain superfamily / RNA polymerase I subunit A N-terminus / RNA polymerase Rpb1, domain 5 / RNA polymerase Rpb1, domain 5 / RNA polymerase, beta subunit, protrusion / RNA polymerase beta subunit / DNA-directed RNA polymerase, insert domain / DNA-directed RNA polymerase, RpoA/D/Rpb3-type / RNA polymerase Rpb3/RpoA insert domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerases D / DNA-directed RNA polymerase, insert domain superfamily / RNA polymerase, RBP11-like subunit / RNA polymerase Rpb2, domain 2 / RNA polymerase Rpb2, domain 2 / RNA polymerase, beta subunit, conserved site / RNA polymerase Rpb2, domain 7 / RNA polymerase Rpb2, domain 3 / RNA polymerase Rpb2, OB-fold / RNA polymerase Rpb2, domain 7 / RNA polymerase Rpb2, domain 3 / RNA polymerases beta chain signature. / DNA-directed RNA polymerase, subunit 2, hybrid-binding domain / DNA-directed RNA polymerase, subunit 2 / DNA-directed RNA polymerase, subunit 2, hybrid-binding domain superfamily / RNA polymerase Rpb2, domain 6
Similarity search - Domain/homology
DNA / DNA (> 10) / DNA (> 100) / DNA-directed RNA polymerase subunit alpha / DNA-directed RNA polymerase subunit omega / DNA-directed RNA polymerase subunit beta' / DNA-directed RNA polymerase subunit beta
Similarity search - Component
Biological speciesEscherichia coli K-12 (bacteria)
Escherichia coli (E. coli)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.7 Å
AuthorsDey, S. / Weixlbaumer, A.
Funding supportEuropean Union, France, 4items
OrganizationGrant numberCountry
European Research Council (ERC)679734European Union
French Infrastructure for Integrated Structural Biology (FRISBI)ANR-10-INBS-05 France
Agence Nationale de la Recherche (ANR)ANR-10-LABX-0030-INRT France
Agence Nationale de la Recherche (ANR)ANR-10-IDEX-0002-02 France
CitationJournal: Mol Cell / Year: 2022
Title: Structural insights into RNA-mediated transcription regulation in bacteria.
Authors: Sanjay Dey / Claire Batisse / Jinal Shukla / Michael W Webster / Maria Takacs / Charlotte Saint-André / Albert Weixlbaumer /
Abstract: RNA can regulate its own synthesis without auxiliary proteins. For example, U-rich RNA sequences signal RNA polymerase (RNAP) to pause transcription and are required for transcript release at ...RNA can regulate its own synthesis without auxiliary proteins. For example, U-rich RNA sequences signal RNA polymerase (RNAP) to pause transcription and are required for transcript release at intrinsic terminators in all kingdoms of life. In contrast, the regulatory RNA putL suppresses pausing and termination in cis. However, how nascent RNA modulates its own synthesis remains largely unknown. We present cryo-EM reconstructions of RNAP captured during transcription of putL variants or an unrelated sequence at a U-rich pause site. Our results suggest how putL suppresses pausing and promotes its synthesis. We demonstrate that transcribing a U-rich sequence, a ubiquitous trigger of intrinsic termination, promotes widening of the RNAP nucleic-acid-binding channel. Widening destabilizes RNAP interactions with DNA and RNA to facilitate transcript dissociation reminiscent of intrinsic transcription termination. Surprisingly, RNAP remains bound to DNA after transcript release. Our results provide the structural framework to understand RNA-mediated intrinsic transcription termination.
History
DepositionJul 5, 2022Deposition site: PDBE / Processing site: PDBE
Revision 1.0Oct 19, 2022Provider: repository / Type: Initial release
Revision 1.1Nov 2, 2022Group: Database references / Category: citation / Item: _citation.journal_volume / _citation.page_first

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: DNA-directed RNA polymerase subunit alpha
B: DNA-directed RNA polymerase subunit alpha
C: DNA-directed RNA polymerase subunit beta
D: DNA-directed RNA polymerase subunit beta'
E: DNA-directed RNA polymerase subunit omega
N: DNA Non-template strand
T: DNA Template strand
hetero molecules


Theoretical massNumber of molelcules
Total (without water)571,77610
Polymers571,6217
Non-polymers1553
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
DNA-directed RNA polymerase subunit ... , 4 types, 5 molecules ABCDE

#1: Protein DNA-directed RNA polymerase subunit alpha / Polymerase / RNAP subunit alpha / RNA polymerase subunit alpha / Transcriptase subunit alpha


Mass: 36558.680 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli K-12 (bacteria) / Gene: rpoA, pez, phs, sez, b3295, JW3257 / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0A7Z4, DNA-directed RNA polymerase
#2: Protein DNA-directed RNA polymerase subunit beta / Polymerase / RNAP subunit beta / RNA polymerase subunit beta / Transcriptase subunit beta


Mass: 150820.875 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli K-12 (bacteria)
Gene: rpoB, groN, nitB, rif, ron, stl, stv, tabD, b3987, JW3950
Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0A8V2, DNA-directed RNA polymerase
#3: Protein DNA-directed RNA polymerase subunit beta' / Polymerase / RNAP subunit beta' / RNA polymerase subunit beta' / Transcriptase subunit beta'


Mass: 155237.672 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli K-12 (bacteria) / Gene: rpoC, Z5561, ECs4911 / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0A8T8, DNA-directed RNA polymerase
#4: Protein DNA-directed RNA polymerase subunit omega / Polymerase / RNAP omega subunit / RNA polymerase omega subunit / Transcriptase subunit omega


Mass: 10249.547 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli K-12 (bacteria) / Gene: rpoZ, b3649, JW3624 / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0A800, DNA-directed RNA polymerase

-
DNA chain , 2 types, 2 molecules NT

#5: DNA chain DNA Non-template strand


Mass: 91015.141 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Escherichia coli (E. coli)
#6: DNA chain DNA Template strand


Mass: 91180.203 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Escherichia coli (E. coli)

-
Non-polymers , 2 types, 3 molecules

#7: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Mg / Feature type: SUBJECT OF INVESTIGATION
#8: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Zn / Feature type: SUBJECT OF INVESTIGATION

-
Details

Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Escherichia coli RNA polymerase post-terminated complex - open clamp state
Type: COMPLEX / Entity ID: #1-#6 / Source: RECOMBINANT
Molecular weightValue: 0.435 MDa / Experimental value: NO
Source (natural)Organism: Escherichia coli K-12 (bacteria)
Source (recombinant)Organism: Escherichia coli BL21(DE3) (bacteria)
Buffer solutionpH: 8
Details: 20 mM Tris-glutamate pH 8.0, 50 mM K-glutamate, 10 mM Mg-glutamate, 0.001 mM ZnCl2, 2mM DTT
SpecimenConc.: 12 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Details: The co-transcriptionally halted complexes for cryo-EM analysis were prepared in vitro by mixing E. coli RNAP holoenzyme with templates containing the DNA base analogue isoG. The RNAP ECs ...Details: The co-transcriptionally halted complexes for cryo-EM analysis were prepared in vitro by mixing E. coli RNAP holoenzyme with templates containing the DNA base analogue isoG. The RNAP ECs halted at the U-rich pause (G122). The complexes were prepared in 0.03 ml reactions and contained: 0.02 mM of E. coli RNAP, 0.080 mM of E. coli Sigma70, 0.02 mM of template DNA, 20 mM Tris-glutamate pH 8.0, 50 mM K-glutamate, 10 mM Mg-glutamate, 0.001 mM ZnCl2, 2mM DTT and 6 mM of each ATP, GTP, CTP and UTP. Initially, all the components except NTPs were added and incubated for 10 min at 310K. To allow transcription elongation, NTPs were added and the sample was incubated for 20 to 40 min at 310K. The final products were purified on a Superose 6 Increase 3.2/300 gel filtration column equilibrated in Glutamate buffer. Samples were concentrated to 10-12 mg/mL using an Amicon Ultra 0.5mL centrifugal filter unit (30 KDa MWCO). Before grid freezing, 8 mM of CHAPSO was added to freshly prepared sample to overcome preferred particle orientation.
Specimen supportGrid material: GOLD / Grid type: Quantifoil R1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 95 % / Chamber temperature: 283 K
Details: Quantifoil UltrAuFoil R1.2/1.3 300 mesh holey gold grids were plasma cleaned on a Model 1070 (Fischione Instruments) for 30 sec at 70% power and with an 80% Argon and 20% Oxygen mixture ...Details: Quantifoil UltrAuFoil R1.2/1.3 300 mesh holey gold grids were plasma cleaned on a Model 1070 (Fischione Instruments) for 30 sec at 70% power and with an 80% Argon and 20% Oxygen mixture prior to the application of 0.004 ml of sample. Grids were plunge frozen into liquid ethane using a Vitrobot mark IV (FEI) with 95% chamber humidity at 283K.

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: 2500 nm / Nominal defocus min: 800 nm
Specimen holderSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 2.2 sec. / Electron dose: 52 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) / Num. of grids imaged: 1

-
Processing

Software
NameVersionClassification
phenix.real_space_refine1.19.2_4158refinement
PHENIX1.19.2_4158refinement
EM software
IDNameVersionCategory
1cryoSPARC3.3particle selection
2SerialEMimage acquisition
4CTFFIND4CTF correction
7Coot0.9model fitting
9PHENIX1.2model refinement
10cryoSPARC3.3initial Euler assignment
11cryoSPARC3.3final Euler assignment
12cryoSPARC3.3classification
13cryoSPARC3.33D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.7 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 62656 / Symmetry type: POINT
Atomic model buildingProtocol: FLEXIBLE FIT / Space: REAL / Target criteria: map cross correlation
Atomic model buildingPDB-ID: 6ALH
RefinementCross valid method: NONE
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
Displacement parametersBiso mean: 125.58 Å2
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.029726062
ELECTRON MICROSCOPYf_angle_d1.037535353
ELECTRON MICROSCOPYf_chiral_restr0.04234035
ELECTRON MICROSCOPYf_plane_restr0.00354511
ELECTRON MICROSCOPYf_dihedral_angle_d15.200110029

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more