[English] 日本語
Yorodumi
- PDB-7zxp: cryo-EM structure of Connexin 32 R22G mutation gap junction channel -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7zxp
Titlecryo-EM structure of Connexin 32 R22G mutation gap junction channel
ComponentsGap junction beta-1 protein
KeywordsMEMBRANE PROTEIN / connexin / gap junction channel / cell communication
Function / homology
Function and homology information


purine ribonucleotide transport / epididymis development / Oligomerization of connexins into connexons / Transport of connexins along the secretory pathway / gap junction assembly / connexin complex / Gap junction assembly / gap junction channel activity / lateral plasma membrane / cell-cell signaling ...purine ribonucleotide transport / epididymis development / Oligomerization of connexins into connexons / Transport of connexins along the secretory pathway / gap junction assembly / connexin complex / Gap junction assembly / gap junction channel activity / lateral plasma membrane / cell-cell signaling / nervous system development / endoplasmic reticulum membrane / identical protein binding
Similarity search - Function
Gap junction beta-1 protein (Cx32) / Connexin / Connexin, N-terminal / Connexin, conserved site / Gap junction protein, cysteine-rich domain / Connexin, N-terminal domain superfamily / Connexin / Connexins signature 1. / Connexins signature 2. / Connexin homologues / Gap junction channel protein cysteine-rich domain
Similarity search - Domain/homology
Gap junction beta-1 protein
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.39 Å
AuthorsQi, C. / Korkhov, V.M.
Funding support Switzerland, 1items
OrganizationGrant numberCountry
Swiss National Science Foundation184951 Switzerland
CitationJournal: Sci Adv / Year: 2023
Title: Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels.
Authors: Chao Qi / Pia Lavriha / Erva Bayraktar / Anand Vaithia / Dina Schuster / Micaela Pannella / Valentina Sala / Paola Picotti / Mario Bortolozzi / Volodymyr M Korkhov /
Abstract: In myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked ...In myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a degenerative neuropathy without a cure. A molecular link between Cx32 dysfunction and CMT1X pathogenesis is still missing. Here, we describe the high-resolution cryo-electron cryo-myography (cryo-EM) structures of the Cx32 GJC and HC, along with two CMT1X-linked mutants, W3S and R22G. While the structures of wild-type and mutant GJCs are virtually identical, the HCs show a major difference: In the W3S and R22G mutant HCs, the amino-terminal gating helix partially occludes the pore, consistent with a diminished HC activity. Our results suggest that HC dysfunction may be involved in the pathogenesis of CMT1X.
History
DepositionMay 22, 2022Deposition site: PDBE / Processing site: PDBE
Revision 1.0May 31, 2023Provider: repository / Type: Initial release
Revision 1.1Jun 5, 2024Group: Data collection / Database references
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Gap junction beta-1 protein
B: Gap junction beta-1 protein
C: Gap junction beta-1 protein
D: Gap junction beta-1 protein
E: Gap junction beta-1 protein
F: Gap junction beta-1 protein
G: Gap junction beta-1 protein
H: Gap junction beta-1 protein
I: Gap junction beta-1 protein
J: Gap junction beta-1 protein
K: Gap junction beta-1 protein
L: Gap junction beta-1 protein


Theoretical massNumber of molelcules
Total (without water)383,58512
Polymers383,58512
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein
Gap junction beta-1 protein / Connexin-32 / Cx32 / GAP junction 28 kDa liver protein


Mass: 31965.393 Da / Num. of mol.: 12
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GJB1, CX32 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P08034

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Connexin32 R22G mutation gap junction channel complex / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT
Molecular weightValue: 32 kDa/nm / Experimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human) / Cell: HEK293
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm
Image recordingElectron dose: 50 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.19.2_4158: / Classification: refinement
CTF correctionType: NONE
3D reconstructionResolution: 2.39 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 70675 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00218924
ELECTRON MICROSCOPYf_angle_d0.43125776
ELECTRON MICROSCOPYf_dihedral_angle_d3.3762484
ELECTRON MICROSCOPYf_chiral_restr0.0393048
ELECTRON MICROSCOPYf_plane_restr0.0033084

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more