[English] 日本語
Yorodumi
- PDB-7v59: Cryo-EM structure of spyCas9-sgRNA-DNA dimer -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7v59
TitleCryo-EM structure of spyCas9-sgRNA-DNA dimer
Components
  • CRISPR-associated endonuclease Cas9/Csn1
  • DNA (49-MER)
  • RNA (115-MER)
KeywordsRNA BINDING PROTEIN/RNA/DNA / Complex / RNA BINDING PROTEIN / RNA BINDING PROTEIN-RNA-DNA complex
Function / homology
Function and homology information


maintenance of CRISPR repeat elements / 3'-5' exonuclease activity / DNA endonuclease activity / defense response to virus / Hydrolases; Acting on ester bonds / DNA binding / RNA binding / metal ion binding
Similarity search - Function
CRISPR-associated endonuclease Cas9, PAM-interacting domain / CRISPR-associated endonuclease Cas9, bridge helix / CRISPR-associated endonuclease Cas9, REC lobe / REC lobe of CRISPR-associated endonuclease Cas9 / Bridge helix of CRISPR-associated endonuclease Cas9 / PAM-interacting domain of CRISPR-associated endonuclease Cas9 / CRISPR-associated endonuclease Cas9 / HNH endonuclease / Cas9-type HNH domain / Cas9-type HNH domain profile. ...CRISPR-associated endonuclease Cas9, PAM-interacting domain / CRISPR-associated endonuclease Cas9, bridge helix / CRISPR-associated endonuclease Cas9, REC lobe / REC lobe of CRISPR-associated endonuclease Cas9 / Bridge helix of CRISPR-associated endonuclease Cas9 / PAM-interacting domain of CRISPR-associated endonuclease Cas9 / CRISPR-associated endonuclease Cas9 / HNH endonuclease / Cas9-type HNH domain / Cas9-type HNH domain profile. / HNH nuclease / Ribonuclease H superfamily
Similarity search - Domain/homology
DNA / DNA (> 10) / RNA / RNA (> 10) / RNA (> 100) / CRISPR-associated endonuclease Cas9/Csn1
Similarity search - Component
Biological speciesStreptococcus pyogenes serotype M1 (bacteria)
Streptococcus pyogenes (bacteria)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 5.26 Å
AuthorsLiu, J. / Deng, P.
Funding support China, 2items
OrganizationGrant numberCountry
Other governmentTsinghua-Peking Joint Center for Life Sciences China
Other governmentBeijing Advanced Innovation Center for Structural Biology China
CitationJournal: Chem Sci / Year: 2021
Title: Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search.
Authors: Mengyi Yang / Ruirui Sun / Pujuan Deng / Yuzhuo Yang / Wenjuan Wang / Jun-Jie Gogo Liu / Chunlai Chen /
Abstract: RNA-guided Cas9 (SpCas9) is a sequence-specific DNA endonuclease that works as one of the most powerful genetic editing tools. However, how Cas9 locates its target among huge amounts of dsDNAs ...RNA-guided Cas9 (SpCas9) is a sequence-specific DNA endonuclease that works as one of the most powerful genetic editing tools. However, how Cas9 locates its target among huge amounts of dsDNAs remains elusive. Here, combining biochemical and single-molecule fluorescence assays, we revealed that Cas9 uses both three-dimensional and one-dimensional diffusion to find its target with high efficiency. We further observed surprising apparent asymmetric target search regions flanking PAM sites on dsDNA under physiological salt conditions, which accelerates the target search efficiency of Cas9 by ∼10-fold. Illustrated by a cryo-EM structure of the Cas9/sgRNA/dsDNA dimer, non-specific interactions between DNA ∼8 bp downstream of the PAM site and lysines within residues 1151-1156 of Cas9, especially lys1153, are the key elements to mediate the one-dimensional diffusion of Cas9 and cause asymmetric target search regions flanking the PAM. Disrupting these non-specific interactions, such as mutating these lysines to alanines, diminishes the contribution of one-dimensional diffusion and reduces the target search rate by several times. In addition, low ionic concentrations or mutations on PAM recognition residues that modulate interactions between Cas9 and dsDNA alter apparent asymmetric target search behaviors. Together, our results reveal a unique searching mechanism of Cas9 under physiological salt conditions, and provide important guidance for both and applications of Cas9.
History
DepositionAug 16, 2021Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Aug 17, 2022Provider: repository / Type: Initial release
Revision 1.1Mar 1, 2023Group: Database references / Category: citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year
Revision 1.2Jun 12, 2024Group: Data collection / Category: chem_comp_atom / chem_comp_bond

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
B: CRISPR-associated endonuclease Cas9/Csn1
E: CRISPR-associated endonuclease Cas9/Csn1
C: RNA (115-MER)
D: DNA (49-MER)
G: RNA (115-MER)
H: DNA (49-MER)


Theoretical massNumber of molelcules
Total (without water)420,5786
Polymers420,5786
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein CRISPR-associated endonuclease Cas9/Csn1 / SpCas9 / SpyCas9


Mass: 158111.234 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Streptococcus pyogenes serotype M1 (bacteria)
Gene: cas9, csn1, SPy_1046 / Production host: Escherichia coli (E. coli)
References: UniProt: Q99ZW2, Hydrolases; Acting on ester bonds
#2: RNA chain RNA (115-MER)


Mass: 37137.090 Da / Num. of mol.: 2 / Source method: obtained synthetically / Source: (synth.) Streptococcus pyogenes (bacteria)
#3: DNA chain DNA (49-MER)


Mass: 15040.633 Da / Num. of mol.: 2 / Source method: obtained synthetically / Source: (synth.) Streptococcus pyogenes (bacteria)

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Ternary complex of spyCas9 with sgRNA and DNA / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT
Source (natural)Organism: Streptococcus pyogenes (bacteria)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD
Image recordingElectron dose: 53 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.14_3260: / Classification: refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 5.26 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 150080 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more