[English] 日本語

- PDB-7u6d: Head region of insulin receptor ectodomain (A-isoform) bound to t... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 7u6d | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Head region of insulin receptor ectodomain (A-isoform) bound to the non-insulin agonist IM459 | |||||||||||||||||||||
![]() |
| |||||||||||||||||||||
![]() | SIGNALING PROTEIN/AGONIST / insulin receptor / insulin-mimic peptide / insulin receptor agonist / SIGNALING PROTEIN-AGONIST complex | |||||||||||||||||||||
Function / homology | ![]() regulation of female gonad development / positive regulation of meiotic cell cycle / insulin-like growth factor II binding / positive regulation of developmental growth / male sex determination / insulin receptor complex / insulin-like growth factor I binding / exocrine pancreas development / positive regulation of protein-containing complex disassembly / dendritic spine maintenance ...regulation of female gonad development / positive regulation of meiotic cell cycle / insulin-like growth factor II binding / positive regulation of developmental growth / male sex determination / insulin receptor complex / insulin-like growth factor I binding / exocrine pancreas development / positive regulation of protein-containing complex disassembly / dendritic spine maintenance / cargo receptor activity / insulin binding / neuronal cell body membrane / adrenal gland development / PTB domain binding / Signaling by Insulin receptor / IRS activation / positive regulation of respiratory burst / amyloid-beta clearance / regulation of embryonic development / positive regulation of receptor internalization / protein kinase activator activity / insulin receptor substrate binding / epidermis development / positive regulation of glycogen biosynthetic process / Signal attenuation / phosphatidylinositol 3-kinase binding / transport across blood-brain barrier / heart morphogenesis / activation of protein kinase B activity / Insulin receptor recycling / insulin-like growth factor receptor binding / dendrite membrane / neuron projection maintenance / positive regulation of MAP kinase activity / positive regulation of mitotic nuclear division / Insulin receptor signalling cascade / receptor-mediated endocytosis / positive regulation of glycolytic process / learning / positive regulation of D-glucose import / placental growth factor receptor activity / insulin receptor activity / vascular endothelial growth factor receptor activity / hepatocyte growth factor receptor activity / macrophage colony-stimulating factor receptor activity / platelet-derived growth factor alpha-receptor activity / platelet-derived growth factor beta-receptor activity / stem cell factor receptor activity / boss receptor activity / protein tyrosine kinase collagen receptor activity / brain-derived neurotrophic factor receptor activity / transmembrane-ephrin receptor activity / GPI-linked ephrin receptor activity / epidermal growth factor receptor activity / fibroblast growth factor receptor activity / insulin-like growth factor receptor activity / receptor protein-tyrosine kinase / peptidyl-tyrosine phosphorylation / caveola / receptor internalization / memory / cellular response to insulin stimulus / male gonad development / positive regulation of nitric oxide biosynthetic process / late endosome / insulin receptor signaling pathway / glucose homeostasis / amyloid-beta binding / positive regulation of protein phosphorylation / PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling / protein autophosphorylation / protein tyrosine kinase activity / positive regulation of canonical NF-kappaB signal transduction / lysosome / positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transduction / receptor complex / positive regulation of MAPK cascade / endosome membrane / positive regulation of cell migration / protein phosphorylation / G protein-coupled receptor signaling pathway / protein domain specific binding / symbiont entry into host cell / axon / external side of plasma membrane / positive regulation of cell population proliferation / regulation of DNA-templated transcription / protein-containing complex binding / GTP binding / positive regulation of DNA-templated transcription / extracellular exosome / ATP binding / identical protein binding / membrane / plasma membrane Similarity search - Function | |||||||||||||||||||||
Biological species | ![]() synthetic construct (others) | |||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 5.03 Å | |||||||||||||||||||||
![]() | Kirk, N.S. / Lawrence, M.C. | |||||||||||||||||||||
Funding support | ![]()
| |||||||||||||||||||||
![]() | ![]() Title: Activation of the human insulin receptor by non-insulin-related peptides. Authors: Nicholas S Kirk / Qi Chen / Yingzhe Ginger Wu / Anastasia L Asante / Haitao Hu / Juan F Espinosa / Francisco Martínez-Olid / Mai B Margetts / Faiz A Mohammed / Vladislav V Kiselyov / David ...Authors: Nicholas S Kirk / Qi Chen / Yingzhe Ginger Wu / Anastasia L Asante / Haitao Hu / Juan F Espinosa / Francisco Martínez-Olid / Mai B Margetts / Faiz A Mohammed / Vladislav V Kiselyov / David G Barrett / Michael C Lawrence / ![]() ![]() ![]() Abstract: The human insulin receptor signalling system plays a critical role in glucose homeostasis. Insulin binding brings about extensive conformational change in the receptor extracellular region that in ...The human insulin receptor signalling system plays a critical role in glucose homeostasis. Insulin binding brings about extensive conformational change in the receptor extracellular region that in turn effects trans-activation of the intracellular tyrosine kinase domains and downstream signalling. Of particular therapeutic interest is whether insulin receptor signalling can be replicated by molecules other than insulin. Here, we present single-particle cryoEM structures that show how a 33-mer polypeptide unrelated to insulin can cross-link two sites on the receptor surface and direct the receptor into a signalling-active conformation. The 33-mer polypeptide engages the receptor by two helical binding motifs that are each potentially mimicable by small molecules. The resultant conformation of the receptor is distinct from-but related to-those in extant three-dimensional structures of the insulin-complexed receptor. Our findings thus illuminate unexplored pathways for controlling the signalling of the insulin receptor as well as opportunities for development of insulin mimetics. | |||||||||||||||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 202.5 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 146.1 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 26363MC ![]() 7u6eC ![]() 8di2C M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein/peptide | Mass: 4000.595 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others) | ||||
---|---|---|---|---|---|
#2: Protein | Mass: 104607.664 Da / Num. of mol.: 2 / Fragment: ectodomain (UNP residues 28-943) Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() References: UniProt: P06213, receptor protein-tyrosine kinase Has ligand of interest | N | Has protein modification | Y | |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: Complex of non-insulin insulin receptor agonist IM459 bound to the insulin receptor ectodomain (A-isoform) construct IR-A(ecto) Type: COMPLEX / Entity ID: all / Source: MULTIPLE SOURCES |
---|---|
Source (natural) | Organism: ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 8 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 4000 nm / Nominal defocus min: 500 nm |
Image recording | Electron dose: 69.5 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-
Processing
Software | Name: PHENIX / Version: 1.19.2_4158: / Classification: refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM software | Name: PHENIX / Category: model refinement | ||||||||||||||||||||||||
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
3D reconstruction | Resolution: 5.03 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 184000 / Symmetry type: POINT | ||||||||||||||||||||||||
Refine LS restraints |
|