[English] 日本語
Yorodumi
- PDB-7trf: Human telomerase catalytic core RNP with H2A/H2B -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7trf
TitleHuman telomerase catalytic core RNP with H2A/H2B
Components
  • Histone H2A
  • Histone H2B type 1-C/E/F/G/I
  • Telomerase RNA, partial sequence
  • Telomerase reverse transcriptase
  • Telomeric repeat substrate
KeywordsREPLICATION / DNA / RNA
Function / homology
Function and homology information


positive regulation of hair cycle / template-free RNA nucleotidyltransferase / positive regulation of transdifferentiation / TERT-RMRP complex / DNA strand elongation / RNA-directed RNA polymerase complex / siRNA transcription / positive regulation of protein localization to nucleolus / telomerase catalytic core complex / RNA-templated DNA biosynthetic process ...positive regulation of hair cycle / template-free RNA nucleotidyltransferase / positive regulation of transdifferentiation / TERT-RMRP complex / DNA strand elongation / RNA-directed RNA polymerase complex / siRNA transcription / positive regulation of protein localization to nucleolus / telomerase catalytic core complex / RNA-templated DNA biosynthetic process / telomerase RNA reverse transcriptase activity / establishment of protein localization to telomere / telomerase activity / nuclear telomere cap complex / siRNA processing / telomerase holoenzyme complex / positive regulation of vascular associated smooth muscle cell migration / telomerase RNA binding / DNA biosynthetic process / RNA-templated transcription / telomeric DNA binding / positive regulation of stem cell proliferation / mitochondrial nucleoid / negative regulation of cellular senescence / Telomere Extension By Telomerase / telomere maintenance via telomerase / negative regulation of extrinsic apoptotic signaling pathway in absence of ligand / replicative senescence / positive regulation of Wnt signaling pathway / positive regulation of G1/S transition of mitotic cell cycle / Replacement of protamines by nucleosomes in the male pronucleus / negative regulation of endothelial cell apoptotic process / response to cadmium ion / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / positive regulation of vascular associated smooth muscle cell proliferation / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / Meiotic synapsis / RNA Polymerase I Promoter Opening / telomere maintenance / Assembly of the ORC complex at the origin of replication / mitochondrion organization / DNA methylation / Condensation of Prophase Chromosomes / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / SIRT1 negatively regulates rRNA expression / Chromatin modifications during the maternal to zygotic transition (MZT) / HCMV Late Events / innate immune response in mucosa / PRC2 methylates histones and DNA / positive regulation of nitric-oxide synthase activity / Defective pyroptosis / HDACs deacetylate histones / positive regulation of glucose import / RNA Polymerase I Promoter Escape / Nonhomologous End-Joining (NHEJ) / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / regulation of protein stability / NoRC negatively regulates rRNA expression / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / B-WICH complex positively regulates rRNA expression / G2/M DNA damage checkpoint / DNA Damage/Telomere Stress Induced Senescence / PML body / Meiotic recombination / Pre-NOTCH Transcription and Translation / transcription coactivator binding / positive regulation of miRNA transcription / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / Transcriptional regulation of granulopoiesis / RNA-directed DNA polymerase / structural constituent of chromatin / antimicrobial humoral immune response mediated by antimicrobial peptide / positive regulation of angiogenesis / RNA-directed DNA polymerase activity / nucleosome / nucleosome assembly / positive regulation of protein binding / E3 ubiquitin ligases ubiquitinate target proteins / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / RUNX1 regulates transcription of genes involved in differentiation of HSCs / HATs acetylate histones / Processing of DNA double-strand break ends / protein-folding chaperone binding / antibacterial humoral response / cellular response to hypoxia / Senescence-Associated Secretory Phenotype (SASP) / Oxidative Stress Induced Senescence / Estrogen-dependent gene expression / negative regulation of neuron apoptotic process / tRNA binding / chromosome, telomeric region / Ub-specific processing proteases
Similarity search - Function
: / Telomerase reverse transcriptase, C-terminal extension / Telomerase ribonucleoprotein complex - RNA binding domain / Telomerase reverse transcriptase / Telomerase ribonucleoprotein complex - RNA-binding domain / Telomerase ribonucleoprotein complex - RNA binding domain / Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site ...: / Telomerase reverse transcriptase, C-terminal extension / Telomerase ribonucleoprotein complex - RNA binding domain / Telomerase reverse transcriptase / Telomerase ribonucleoprotein complex - RNA-binding domain / Telomerase ribonucleoprotein complex - RNA binding domain / Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H2A/H2B/H3 / Core histone H2A/H2B/H3/H4 / Reverse transcriptase (RNA-dependent DNA polymerase) / Reverse transcriptase domain / Reverse transcriptase (RT) catalytic domain profile. / Histone-fold / DNA/RNA polymerase superfamily
Similarity search - Domain/homology
: / DNA / DNA (> 10) / RNA / RNA (> 10) / RNA (> 100) / Histone H2A / Telomerase reverse transcriptase / Histone H2B type 1-C/E/F/G/I
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.7 Å
AuthorsLiu, B. / He, Y. / Wang, Y. / Song, H. / Zhou, Z.H. / Feigon, J.
Funding support United States, 3items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R35GM131901 United States
National Science Foundation (NSF, United States)MCB2016540 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM071940 United States
CitationJournal: Nature / Year: 2022
Title: Structure of active human telomerase with telomere shelterin protein TPP1.
Authors: Baocheng Liu / Yao He / Yaqiang Wang / He Song / Z Hong Zhou / Juli Feigon /
Abstract: Human telomerase is a RNA-protein complex that extends the 3' end of linear chromosomes by synthesizing multiple copies of the telomeric repeat TTAGGG. Its activity is a determinant of cancer ...Human telomerase is a RNA-protein complex that extends the 3' end of linear chromosomes by synthesizing multiple copies of the telomeric repeat TTAGGG. Its activity is a determinant of cancer progression, stem cell renewal and cellular aging. Telomerase is recruited to telomeres and activated for telomere repeat synthesis by the telomere shelterin protein TPP1. Human telomerase has a bilobal structure with a catalytic core ribonuclear protein and a H and ACA box ribonuclear protein. Here we report cryo-electron microscopy structures of human telomerase catalytic core of telomerase reverse transcriptase (TERT) and telomerase RNA (TER (also known as hTR)), and of telomerase with the shelterin protein TPP1. TPP1 forms a structured interface with the TERT-unique telomerase essential N-terminal domain (TEN) and the telomerase RAP motif (TRAP) that are unique to TERT, and conformational dynamics of TEN-TRAP are damped upon TPP1 binding, defining the requirements for recruitment and activation. The structures further reveal that the elements of TERT and TER that are involved in template and telomeric DNA handling-including the TEN domain and the TRAP-thumb helix channel-are largely structurally homologous to those in Tetrahymena telomerase, and provide unique insights into the mechanism of telomerase activity. The binding site of the telomerase inhibitor BIBR1532 overlaps a critical interaction between the TER pseudoknot and the TERT thumb domain. Numerous mutations leading to telomeropathies are located at the TERT-TER and TEN-TRAP-TPP1 interfaces, highlighting the importance of TER-TERT and TPP1 interactions for telomerase activity, recruitment and as drug targets.
History
DepositionJan 28, 2022Deposition site: RCSB / Processing site: RCSB
Revision 1.0Apr 20, 2022Provider: repository / Type: Initial release
Revision 1.1Apr 27, 2022Group: Database references / Category: citation / Item: _citation.pdbx_database_id_PubMed / _citation.title
Revision 1.2May 4, 2022Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first / _citation.page_last
Revision 1.3Feb 21, 2024Group: Data collection / Category: chem_comp_atom / chem_comp_bond

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
F: Histone H2B type 1-C/E/F/G/I
E: Histone H2A
B: Telomerase RNA, partial sequence
A: Telomerase reverse transcriptase
D: Telomeric repeat substrate


Theoretical massNumber of molelcules
Total (without water)309,6895
Polymers309,6895
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein Histone H2B type 1-C/E/F/G/I / Histone H2B.1 A / Histone H2B.a / H2B/a / Histone H2B.g / H2B/g / Histone H2B.h / H2B/h / Histone ...Histone H2B.1 A / Histone H2B.a / H2B/a / Histone H2B.g / H2B/g / Histone H2B.h / H2B/h / Histone H2B.k / H2B/k / Histone H2B.l / H2B/l


Mass: 13937.213 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: H2BC4, H2BFL, HIST1H2BC, H2BC6, H2BFH, HIST1H2BE, H2BC7, H2BFG, HIST1H2BF, H2BC8, H2BFA, HIST1H2BG, H2BC10, H2BFK, HIST1H2BI
Production host: Homo sapiens (human) / References: UniProt: P62807
#2: Protein Histone H2A


Mass: 14047.451 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: H2AFJ, hCG_1639762 / Production host: Homo sapiens (human) / References: UniProt: A0A024RAS2
#3: RNA chain Telomerase RNA, partial sequence


Mass: 145477.797 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human) / References: GenBank: 1932797
#4: Protein Telomerase reverse transcriptase / HEST2 / Telomerase catalytic subunit / Telomerase-associated protein 2 / TP2


Mass: 130711.492 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: TERT, EST2, TCS1, TRT / Production host: Homo sapiens (human) / References: UniProt: O14746, RNA-directed DNA polymerase
#5: DNA chain Telomeric repeat substrate


Mass: 5514.567 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human)

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: active human telomerase catalytic core with shelterin protein TPP1
Type: COMPLEX / Entity ID: all / Source: MULTIPLE SOURCES
Molecular weightExperimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: SPOT SCAN
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 4000 nm / Nominal defocus min: 800 nm
Image recordingElectron dose: 55 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.18.2_3874: / Classification: refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.7 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 83992 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00312968
ELECTRON MICROSCOPYf_angle_d0.56418644
ELECTRON MICROSCOPYf_dihedral_angle_d22.5283714
ELECTRON MICROSCOPYf_chiral_restr0.0342285
ELECTRON MICROSCOPYf_plane_restr0.0041542

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more