[English] 日本語
Yorodumi
- PDB-7ozi: CryoEM structure of human enterovirus 70 A-particle -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7ozi
TitleCryoEM structure of human enterovirus 70 A-particle
Components
  • Capsid protein VP1
  • Capsid protein VP2
  • Capsid protein VP3
KeywordsVIRUS / enterovirus / altered particle / human enterovirus / acute hemorrhagic conjunctivitis
Function / homology
Function and homology information


symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of RIG-I activity / picornain 2A / symbiont-mediated suppression of host mRNA export from nucleus / symbiont genome entry into host cell via pore formation in plasma membrane / picornain 3C / T=pseudo3 icosahedral viral capsid / host cell cytoplasmic vesicle membrane / endocytosis involved in viral entry into host cell / : / nucleoside-triphosphate phosphatase ...symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of RIG-I activity / picornain 2A / symbiont-mediated suppression of host mRNA export from nucleus / symbiont genome entry into host cell via pore formation in plasma membrane / picornain 3C / T=pseudo3 icosahedral viral capsid / host cell cytoplasmic vesicle membrane / endocytosis involved in viral entry into host cell / : / nucleoside-triphosphate phosphatase / protein complex oligomerization / monoatomic ion channel activity / DNA replication / RNA helicase activity / induction by virus of host autophagy / RNA-directed RNA polymerase / symbiont-mediated suppression of host gene expression / viral RNA genome replication / cysteine-type endopeptidase activity / RNA-dependent RNA polymerase activity / DNA-templated transcription / host cell nucleus / virion attachment to host cell / structural molecule activity / ATP hydrolysis activity / proteolysis / RNA binding / ATP binding / membrane / metal ion binding
Similarity search - Function
Poliovirus 3A protein-like / Poliovirus 3A protein like / Picornavirus 2B protein / Poliovirus core protein 3a, soluble domain / Picornavirus 2B protein / Peptidase C3, picornavirus core protein 2A / Picornavirus core protein 2A / Picornavirus coat protein VP4 / Picornavirus coat protein (VP4) / Picornavirales 3C/3C-like protease domain ...Poliovirus 3A protein-like / Poliovirus 3A protein like / Picornavirus 2B protein / Poliovirus core protein 3a, soluble domain / Picornavirus 2B protein / Peptidase C3, picornavirus core protein 2A / Picornavirus core protein 2A / Picornavirus coat protein VP4 / Picornavirus coat protein (VP4) / Picornavirales 3C/3C-like protease domain / Picornavirales 3C/3C-like protease domain profile. / Peptidase C3A/C3B, picornaviral / 3C cysteine protease (picornain 3C) / Picornavirus capsid / picornavirus capsid protein / Helicase, superfamily 3, single-stranded RNA virus / Superfamily 3 helicase of positive ssRNA viruses domain profile. / Helicase, superfamily 3, single-stranded DNA/RNA virus / RNA helicase / Picornavirus/Calicivirus coat protein / Viral coat protein subunit / RNA-directed RNA polymerase, C-terminal domain / Viral RNA-dependent RNA polymerase / Reverse transcriptase/Diguanylate cyclase domain / RNA-directed RNA polymerase, catalytic domain / RdRp of positive ssRNA viruses catalytic domain profile. / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / Peptidase S1, PA clan, chymotrypsin-like fold / Peptidase S1, PA clan / DNA/RNA polymerase superfamily / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
Biological speciesHuman enterovirus 70
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.73 Å
AuthorsFuzik, T. / Plevka, P. / Moravcova, J.
Funding support Czech Republic, 1items
OrganizationGrant numberCountry
Grant Agency of the Czech RepublicGX19-25982X Czech Republic
CitationJournal: J Virol / Year: 2022
Title: Structure of Human Enterovirus 70 and Its Inhibition by Capsid-Binding Compounds.
Authors: Tibor Füzik / Jana Moravcová / Sergei Kalynych / Pavel Plevka /
Abstract: Enterovirus 70 (EV70) is a human pathogen belonging to the family . EV70 is transmitted by eye secretions and causes acute hemorrhagic conjunctivitis, a serious eye disease. Despite the severity of ...Enterovirus 70 (EV70) is a human pathogen belonging to the family . EV70 is transmitted by eye secretions and causes acute hemorrhagic conjunctivitis, a serious eye disease. Despite the severity of the disease caused by EV70, its structure is unknown. Here, we present the structures of the EV70 virion, altered particle, and empty capsid determined by cryo-electron microscopy. The capsid of EV70 is composed of the subunits VP1, VP2, VP3, and VP4. The partially collapsed hydrophobic pocket located in VP1 of the EV70 virion is not occupied by a pocket factor, which is commonly present in other enteroviruses. Nevertheless, we show that the pocket can be targeted by the antiviral compounds WIN51711 and pleconaril, which block virus infection. The inhibitors prevent genome release by stabilizing EV70 particles. Knowledge of the structures of complexes of EV70 with inhibitors will enable the development of capsid-binding therapeutics against this virus. Globally distributed enterovirus 70 (EV70) causes local outbreaks of acute hemorrhagic conjunctivitis. The discharge from infected eyes enables the high-efficiency transmission of EV70 in overcrowded areas with low hygienic standards. Currently, only symptomatic treatments are available. We determined the structures of EV70 in its native form, the genome release intermediate, and the empty capsid resulting from genome release. Furthermore, we elucidated the structures of EV70 in complex with two inhibitors that block virus infection, and we describe the mechanism of their binding to the virus capsid. These results enable the development of therapeutics against EV70.
History
DepositionJun 28, 2021Deposition site: PDBE / Processing site: PDBE
Revision 1.0Jul 13, 2022Provider: repository / Type: Initial release
Revision 1.1Aug 17, 2022Group: Database references / Category: citation
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_ASTM / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year
Revision 1.2Sep 28, 2022Group: Data collection / Database references / Category: citation / em_imaging
Item: _citation.journal_volume / _em_imaging.nominal_defocus_max / _em_imaging.nominal_defocus_min

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Capsid protein VP1
B: Capsid protein VP2
C: Capsid protein VP3


Theoretical massNumber of molelcules
Total (without water)88,1613
Polymers88,1613
Non-polymers00
Water0
1
A: Capsid protein VP1
B: Capsid protein VP2
C: Capsid protein VP3
x 60


Theoretical massNumber of molelcules
Total (without water)5,289,677180
Polymers5,289,677180
Non-polymers00
Water0
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
point symmetry operation59
Noncrystallographic symmetry (NCS)NCS oper:
IDCodeMatrix
1generate(1), (1), (1)
2generate(-0.809017, -0.5, 0.309017), (-0.5, 0.309017, -0.809017), (0.309017, -0.809017, -0.5)
3generate(1), (-1), (-1)
4generate(0.809017, -0.5, -0.309017), (-0.5, -0.309017, -0.809017), (0.309017, 0.809017, -0.5)
5generate(0.5, 0.309017, -0.809017), (-0.309017, -0.809017, -0.5), (-0.809017, 0.5, -0.309017)
6generate(-0.309017, -0.809017, -0.5), (-0.809017, 0.5, -0.309017), (0.5, 0.309017, -0.809017)
7generate(-0.809017, 0.5, -0.309017), (0.5, 0.309017, -0.809017), (-0.309017, -0.809017, -0.5)
8generate(-0.809017, -0.5, -0.309017), (0.5, -0.309017, -0.809017), (0.309017, -0.809017, 0.5)
9generate(-0.309017, 0.809017, -0.5), (-0.809017, -0.5, -0.309017), (-0.5, 0.309017, 0.809017)
10generate(0.5, -0.309017, -0.809017), (-0.309017, 0.809017, -0.5), (0.809017, 0.5, 0.309017)
11generate(-1), (-1), (1)
12generate(-0.5, -0.309017, -0.809017), (0.309017, 0.809017, -0.5), (0.809017, -0.5, -0.309017)
13generate(-0.5, 0.309017, -0.809017), (0.309017, -0.809017, -0.5), (-0.809017, -0.5, 0.309017)
14generate(-0.309017, -0.809017, -0.5), (0.809017, -0.5, 0.309017), (-0.5, -0.309017, 0.809017)
15generate(-0.809017, 0.5, -0.309017), (-0.5, -0.309017, 0.809017), (0.309017, 0.809017, 0.5)
16generate(0.5, 0.309017, -0.809017), (0.309017, 0.809017, 0.5), (0.809017, -0.5, 0.309017)
17generate(-0.5, 0.309017, -0.809017), (-0.309017, 0.809017, 0.5), (0.809017, 0.5, -0.309017)
18generate(-1), (1), (-1)
19generate(-0.5, -0.309017, -0.809017), (-0.309017, -0.809017, 0.5), (-0.809017, 0.5, 0.309017)
20generate(-1), (1), (-1)
21generate(-0.809017, 0.5, 0.309017), (0.5, 0.309017, 0.809017), (0.309017, 0.809017, -0.5)
22generate(0.809017, 0.5, -0.309017), (0.5, -0.309017, 0.809017), (0.309017, -0.809017, -0.5)
23generate(-0.309017, 0.809017, -0.5), (0.809017, 0.5, 0.309017), (0.5, -0.309017, -0.809017)
24generate(0.5, -0.309017, -0.809017), (0.309017, -0.809017, 0.5), (-0.809017, -0.5, -0.309017)
25generate(-0.809017, -0.5, -0.309017), (-0.5, 0.309017, 0.809017), (-0.309017, 0.809017, -0.5)
26generate(-0.309017, -0.809017, 0.5), (-0.809017, 0.5, 0.309017), (-0.5, -0.309017, -0.809017)
27generate(-0.309017, 0.809017, 0.5), (0.809017, 0.5, -0.309017), (-0.5, 0.309017, -0.809017)
28generate(1), (-1), (-1)
29generate(0.309017, 0.809017, -0.5), (0.809017, -0.5, -0.309017), (-0.5, -0.309017, -0.809017)
30generate(0.309017, -0.809017, -0.5), (-0.809017, -0.5, 0.309017), (-0.5, 0.309017, -0.809017)
31generate(-1), (1), (-1)
32generate(0.809017, 0.5, -0.309017), (-0.5, 0.309017, -0.809017), (-0.309017, 0.809017, 0.5)
33generate(-1), (-1), (1)
34generate(-0.809017, 0.5, 0.309017), (-0.5, -0.309017, -0.809017), (-0.309017, -0.809017, 0.5)
35generate(-0.5, -0.309017, 0.809017), (-0.309017, -0.809017, -0.5), (0.809017, -0.5, 0.309017)
36generate(0.309017, 0.809017, 0.5), (-0.809017, 0.5, -0.309017), (-0.5, -0.309017, 0.809017)
37generate(0.809017, -0.5, 0.309017), (0.5, 0.309017, -0.809017), (0.309017, 0.809017, 0.5)
38generate(0.809017, 0.5, 0.309017), (0.5, -0.309017, -0.809017), (-0.309017, 0.809017, -0.5)
39generate(0.309017, -0.809017, 0.5), (-0.809017, -0.5, -0.309017), (0.5, -0.309017, -0.809017)
40generate(-0.5, 0.309017, 0.809017), (-0.309017, 0.809017, -0.5), (-0.809017, -0.5, -0.309017)
41generate(1), (-1), (-1)
42generate(0.5, 0.309017, 0.809017), (0.309017, 0.809017, -0.5), (-0.809017, 0.5, 0.309017)
43generate(0.5, -0.309017, 0.809017), (0.309017, -0.809017, -0.5), (0.809017, 0.5, -0.309017)
44generate(0.309017, 0.809017, 0.5), (0.809017, -0.5, 0.309017), (0.5, 0.309017, -0.809017)
45generate(0.809017, -0.5, 0.309017), (-0.5, -0.309017, 0.809017), (-0.309017, -0.809017, -0.5)
46generate(-0.5, -0.309017, 0.809017), (0.309017, 0.809017, 0.5), (-0.809017, 0.5, -0.309017)
47generate(0.5, -0.309017, 0.809017), (-0.309017, 0.809017, 0.5), (-0.809017, -0.5, 0.309017)
48generate(1), (1), (1)
49generate(0.5, 0.309017, 0.809017), (-0.309017, -0.809017, 0.5), (0.809017, -0.5, -0.309017)
50generate(1), (1), (1)
51generate(0.809017, -0.5, -0.309017), (0.5, 0.309017, 0.809017), (-0.309017, -0.809017, 0.5)
52generate(-0.809017, -0.5, 0.309017), (0.5, -0.309017, 0.809017), (-0.309017, 0.809017, 0.5)
53generate(0.309017, -0.809017, 0.5), (0.809017, 0.5, 0.309017), (-0.5, 0.309017, 0.809017)
54generate(-0.5, 0.309017, 0.809017), (0.309017, -0.809017, 0.5), (0.809017, 0.5, 0.309017)
55generate(0.809017, 0.5, 0.309017), (-0.5, 0.309017, 0.809017), (0.309017, -0.809017, 0.5)
56generate(0.309017, 0.809017, -0.5), (-0.809017, 0.5, 0.309017), (0.5, 0.309017, 0.809017)
57generate(0.309017, -0.809017, -0.5), (0.809017, 0.5, -0.309017), (0.5, -0.309017, 0.809017)
58generate(-1), (-1), (1)
59generate(-0.309017, -0.809017, 0.5), (0.809017, -0.5, -0.309017), (0.5, 0.309017, 0.809017)
60generate(-0.309017, 0.809017, 0.5), (-0.809017, -0.5, 0.309017), (0.5, -0.309017, 0.809017)

-
Components

#1: Protein Capsid protein VP1 /


Mass: 33978.715 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Human enterovirus 70 (strain J670/71) / Cell line: hTERT RPE1 / Strain: J670/71 / References: UniProt: P32537
#2: Protein Capsid protein VP2 /


Mass: 27536.107 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Human enterovirus 70 (strain J670/71) / Cell line: hTERT RPE1 / Strain: J670/71 / References: UniProt: P32537
#3: Protein Capsid protein VP3 /


Mass: 26646.455 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Human enterovirus 70 (strain J670/71) / Cell line: hTERT RPE1 / Strain: J670/71 / References: UniProt: P32537

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Enterovirus D70 / Type: VIRUS / Entity ID: all / Source: NATURAL
Molecular weightValue: 5.4 MDa / Experimental value: NO
Source (natural)Organism: Human enterovirus 70 (strain J670/71) / Strain: J670/71
Details of virusEmpty: NO / Enveloped: NO / Isolate: STRAIN / Type: VIRION
Virus shellName: Capsid / Diameter: 337 nm / Triangulation number (T number): 1
Buffer solutionpH: 7
SpecimenConc.: 2 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R2/1
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 278 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal magnification: 75000 X / Nominal defocus max: 3000 nm / Nominal defocus min: 1000 nm / Cs: 2.7 mm / C2 aperture diameter: 70 µm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 1 sec. / Electron dose: 48 e/Å2 / Detector mode: INTEGRATING / Film or detector model: FEI FALCON II (4k x 4k) / Num. of grids imaged: 2 / Num. of real images: 6698
Image scansSampling size: 14 µm / Width: 4096 / Height: 4096 / Movie frames/image: 16 / Used frames/image: 1-16

-
Processing

SoftwareName: REFMAC / Version: 5.8.0267 / Classification: refinement
EM software
IDNameVersionCategoryDetails
2EPU1.8image acquisition
4GctfCTF correctionCTF estimation
5RELION3.1CTF correctionCTF refinemnt, correction
8UCSF Chimeramodel fitting
9Cootmodel fitting
11RELION3.1initial Euler assignment
12RELION3.1final Euler assignment
13RELION3.1classification
14RELION3.13D reconstruction
15PHENIXmodel refinement
16REFMACmodel refinement
Image processingDetails: Movie frames motion corrected (MotionCor 2)
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 10524 / Details: autopicking
SymmetryPoint symmetry: I (icosahedral)
3D reconstructionResolution: 3.73 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 1350 / Algorithm: FOURIER SPACE / Num. of class averages: 1 / Symmetry type: POINT
Atomic model buildingB value: 76 / Protocol: FLEXIBLE FIT / Space: RECIPROCAL
RefinementResolution: 3.73→340.16 Å / Cor.coef. Fo:Fc: 0.697 / SU B: 40.951 / SU ML: 0.554 / ESU R: 0.302
Stereochemistry target values: MAXIMUM LIKELIHOOD WITH PHASES
Details: HYDROGENS HAVE BEEN ADDED IN THE RIDING POSITIONS
RfactorNum. reflection% reflection
Rwork0.38033 --
obs0.38033 135713 100 %
Solvent computationIon probe radii: 0.8 Å / Shrinkage radii: 0.8 Å / VDW probe radii: 1.2 Å / Solvent model: MASK
Displacement parametersBiso mean: 70.562 Å2
Baniso -1Baniso -2Baniso -3
1-0 Å20 Å20 Å2
2--0 Å20 Å2
3---0 Å2
Refinement stepCycle: 1 / Total: 5195
Refine LS restraints
Refine-IDTypeDev idealDev ideal targetNumber
ELECTRON MICROSCOPYr_bond_refined_d0.0030.0135329
ELECTRON MICROSCOPYr_bond_other_d0.0020.0174985
ELECTRON MICROSCOPYr_angle_refined_deg1.1071.6447253
ELECTRON MICROSCOPYr_angle_other_deg1.1951.5711457
ELECTRON MICROSCOPYr_dihedral_angle_1_deg5.6855651
ELECTRON MICROSCOPYr_dihedral_angle_2_deg31.61322.529257
ELECTRON MICROSCOPYr_dihedral_angle_3_deg14.36715850
ELECTRON MICROSCOPYr_dihedral_angle_4_deg13.571526
ELECTRON MICROSCOPYr_chiral_restr0.0470.2714
ELECTRON MICROSCOPYr_gen_planes_refined0.0040.026014
ELECTRON MICROSCOPYr_gen_planes_other0.0020.021266
ELECTRON MICROSCOPYr_nbd_refined
ELECTRON MICROSCOPYr_nbd_other
ELECTRON MICROSCOPYr_nbtor_refined
ELECTRON MICROSCOPYr_nbtor_other
ELECTRON MICROSCOPYr_xyhbond_nbd_refined
ELECTRON MICROSCOPYr_xyhbond_nbd_other
ELECTRON MICROSCOPYr_metal_ion_refined
ELECTRON MICROSCOPYr_metal_ion_other
ELECTRON MICROSCOPYr_symmetry_vdw_refined
ELECTRON MICROSCOPYr_symmetry_vdw_other
ELECTRON MICROSCOPYr_symmetry_hbond_refined
ELECTRON MICROSCOPYr_symmetry_hbond_other
ELECTRON MICROSCOPYr_symmetry_metal_ion_refined
ELECTRON MICROSCOPYr_symmetry_metal_ion_other
ELECTRON MICROSCOPYr_mcbond_it0.3277.62634
ELECTRON MICROSCOPYr_mcbond_other0.3277.5992633
ELECTRON MICROSCOPYr_mcangle_it0.62711.3893275
ELECTRON MICROSCOPYr_mcangle_other0.62711.3893276
ELECTRON MICROSCOPYr_scbond_it0.0987.6012695
ELECTRON MICROSCOPYr_scbond_other0.0987.6012696
ELECTRON MICROSCOPYr_scangle_it
ELECTRON MICROSCOPYr_scangle_other0.2611.3973979
ELECTRON MICROSCOPYr_long_range_B_refined3.08719255
ELECTRON MICROSCOPYr_long_range_B_other3.08719256
ELECTRON MICROSCOPYr_rigid_bond_restr
ELECTRON MICROSCOPYr_sphericity_free
ELECTRON MICROSCOPYr_sphericity_bonded
LS refinement shellResolution: 3.73→3.827 Å / Total num. of bins used: 20
RfactorNum. reflection% reflection
Rfree0 0 -
Rwork0.521 9971 -
obs--100 %

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more