[English] 日本語
Yorodumi
- PDB-7m6a: High resolution structure of the membrane embedded skeletal muscl... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7m6a
TitleHigh resolution structure of the membrane embedded skeletal muscle ryanodine receptor
Components
  • Peptidyl-prolyl cis-trans isomerase FKBP1B
  • Ryanodine receptor 1
KeywordsMEMBRANE PROTEIN/ISOMERASE / ryanodine receptor / calcium / membrane / liposome / MEMBRANE PROTEIN-ISOMERASE complex
Function / homology
Function and homology information


ATP-gated ion channel activity / positive regulation of sequestering of calcium ion / cyclic nucleotide binding / negative regulation of insulin secretion involved in cellular response to glucose stimulus / terminal cisterna / ryanodine receptor complex / negative regulation of release of sequestered calcium ion into cytosol / ryanodine-sensitive calcium-release channel activity / neuronal action potential propagation / insulin secretion involved in cellular response to glucose stimulus ...ATP-gated ion channel activity / positive regulation of sequestering of calcium ion / cyclic nucleotide binding / negative regulation of insulin secretion involved in cellular response to glucose stimulus / terminal cisterna / ryanodine receptor complex / negative regulation of release of sequestered calcium ion into cytosol / ryanodine-sensitive calcium-release channel activity / neuronal action potential propagation / insulin secretion involved in cellular response to glucose stimulus / release of sequestered calcium ion into cytosol by sarcoplasmic reticulum / ossification involved in bone maturation / cell communication by electrical coupling involved in cardiac conduction / response to redox state / protein maturation by protein folding / 'de novo' protein folding / skin development / negative regulation of heart rate / negative regulation of phosphoprotein phosphatase activity / FK506 binding / positive regulation of axon regeneration / cellular response to caffeine / outflow tract morphogenesis / intracellularly gated calcium channel activity / organelle membrane / : / smooth muscle contraction / toxic substance binding / smooth endoplasmic reticulum / negative regulation of ryanodine-sensitive calcium-release channel activity / voltage-gated calcium channel activity / response to vitamin E / calcium channel inhibitor activity / regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion / protein peptidyl-prolyl isomerization / skeletal muscle fiber development / T cell proliferation / striated muscle contraction / regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum / release of sequestered calcium ion into cytosol / Ion homeostasis / regulation of ryanodine-sensitive calcium-release channel activity / sarcoplasmic reticulum membrane / calcium channel complex / regulation of cytosolic calcium ion concentration / cellular response to calcium ion / peptidylprolyl isomerase / sarcoplasmic reticulum / peptidyl-prolyl cis-trans isomerase activity / muscle contraction / calcium ion transmembrane transport / calcium channel activity / response to hydrogen peroxide / Stimuli-sensing channels / sarcolemma / Z disc / intracellular calcium ion homeostasis / disordered domain specific binding / positive regulation of cytosolic calcium ion concentration / protein refolding / protein homotetramerization / transmembrane transporter binding / calmodulin binding / signaling receptor binding / calcium ion binding / ATP binding / identical protein binding / membrane / cytoplasm / cytosol
Similarity search - Function
: / Ryanodine receptor junctional solenoid repeat / Ryanodine receptor, SPRY domain 2 / Ryanodine Receptor TM 4-6 / Ryanodine receptor / Ryanodine receptor, SPRY domain 1 / Ryanodine receptor, SPRY domain 3 / Ryanodine Receptor TM 4-6 / Ryanodine receptor Ryr / RyR domain ...: / Ryanodine receptor junctional solenoid repeat / Ryanodine receptor, SPRY domain 2 / Ryanodine Receptor TM 4-6 / Ryanodine receptor / Ryanodine receptor, SPRY domain 1 / Ryanodine receptor, SPRY domain 3 / Ryanodine Receptor TM 4-6 / Ryanodine receptor Ryr / RyR domain / RyR/IP3 receptor binding core, RIH domain superfamily / : / RyR/IP3R Homology associated domain / Inositol 1,4,5-trisphosphate/ryanodine receptor / RIH domain / RyR and IP3R Homology associated / Inositol 1,4,5-trisphosphate/ryanodine receptor / RIH domain / MIR motif / MIR domain / MIR domain profile. / Domain in ryanodine and inositol trisphosphate receptors and protein O-mannosyltransferases / Mir domain superfamily / SPRY domain / B30.2/SPRY domain / B30.2/SPRY domain profile. / SPRY domain / B30.2/SPRY domain superfamily / Domain in SPla and the RYanodine Receptor. / FKBP-type peptidyl-prolyl cis-trans isomerase domain profile. / FKBP-type peptidyl-prolyl cis-trans isomerase domain / FKBP-type peptidyl-prolyl cis-trans isomerase / Peptidyl-prolyl cis-trans isomerase domain superfamily / Ion transport domain / Ion transport protein / EF-hand domain pair / Concanavalin A-like lectin/glucanase domain superfamily
Similarity search - Domain/homology
ADENOSINE-5'-TRIPHOSPHATE / CAFFEINE / Ryanodine receptor 1 / Peptidyl-prolyl cis-trans isomerase FKBP1B
Similarity search - Component
Biological speciesHomo sapiens (human)
Oryctolagus cuniculus (rabbit)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.36 Å
AuthorsMelville, Z. / Kim, K. / Clarke, O.B. / Marks, A.R.
Funding support United States, 6items
OrganizationGrant numberCountry
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI)R01HL145473 United States
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI)R01DK118240 United States
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI)R01HL142903 United States
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI)R01HL140934 United States
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI)R01AR070194 United States
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI)T32 HL120826 United States
CitationJournal: Structure / Year: 2022
Title: High-resolution structure of the membrane-embedded skeletal muscle ryanodine receptor.
Authors: Zephan Melville / Kookjoo Kim / Oliver B Clarke / Andrew R Marks /
Abstract: The type 1 ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for skeletal muscle excitation-contraction coupling and is the largest known ion channel, ...The type 1 ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for skeletal muscle excitation-contraction coupling and is the largest known ion channel, composed of four 565-kDa protomers. Cryogenic electron microscopy (cryo-EM) studies of the RyR have primarily used detergent to solubilize the channel; in the present study, we have used cryo-EM to solve high-resolution structures of the channel in liposomes using a gel-filtration approach with on-column detergent removal to form liposomes and incorporate the channel simultaneously. This allowed us to resolve the structure of the channel in the primed and open states at 3.4 and 4.0 Å, respectively, with a single dataset. This method offers validation for detergent-based structures of the RyR and offers a starting point for utilizing a chemical gradient mimicking the SR, where Ca concentrations are millimolar in the lumen and nanomolar in the cytosol.
History
DepositionMar 25, 2021Deposition site: RCSB / Processing site: RCSB
Revision 1.0Sep 8, 2021Provider: repository / Type: Initial release
Revision 1.1Sep 15, 2021Group: Database references / Category: citation / citation_author
Item: _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed ..._citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.identifier_ORCID
Revision 1.2Jan 19, 2022Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first / _citation.year

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-23692
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
F: Peptidyl-prolyl cis-trans isomerase FKBP1B
A: Ryanodine receptor 1
H: Peptidyl-prolyl cis-trans isomerase FKBP1B
J: Peptidyl-prolyl cis-trans isomerase FKBP1B
O: Peptidyl-prolyl cis-trans isomerase FKBP1B
G: Ryanodine receptor 1
B: Ryanodine receptor 1
I: Ryanodine receptor 1
hetero molecules


Theoretical massNumber of molelcules
Total (without water)2,314,05624
Polymers2,310,8298
Non-polymers3,22716
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Protein , 2 types, 8 molecules FHJOAGBI

#1: Protein
Peptidyl-prolyl cis-trans isomerase FKBP1B / PPIase FKBP1B / 12.6 kDa FK506-binding protein / FKBP-12.6 / FK506-binding protein 1B / FKBP-1B / ...PPIase FKBP1B / 12.6 kDa FK506-binding protein / FKBP-12.6 / FK506-binding protein 1B / FKBP-1B / Immunophilin FKBP12.6 / Rotamase / h-FKBP-12


Mass: 11798.501 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: FKBP1B, FKBP12.6, FKBP1L, FKBP9, OTK4 / Production host: Escherichia coli (E. coli) / References: UniProt: P68106, peptidylprolyl isomerase
#2: Protein
Ryanodine receptor 1 / RYR-1 / RyR1 / Skeletal muscle calcium release channel / Skeletal muscle ryanodine receptor / ...RYR-1 / RyR1 / Skeletal muscle calcium release channel / Skeletal muscle ryanodine receptor / Skeletal muscle-type ryanodine receptor / Type 1 ryanodine receptor


Mass: 565908.625 Da / Num. of mol.: 4 / Source method: isolated from a natural source / Source: (natural) Oryctolagus cuniculus (rabbit) / References: UniProt: P11716

-
Non-polymers , 4 types, 16 molecules

#3: Chemical
ChemComp-ATP / ADENOSINE-5'-TRIPHOSPHATE


Mass: 507.181 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C10H16N5O13P3 / Comment: ATP, energy-carrying molecule*YM
#4: Chemical
ChemComp-CA / CALCIUM ION


Mass: 40.078 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: Ca
#5: Chemical
ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: Zn
#6: Chemical
ChemComp-CFF / CAFFEINE / 3,7-DIHYDRO-1,3,7-TRIMETHYL-1H-PURINE-2,6-DIONE


Mass: 194.191 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C8H10N4O2 / Comment: medication*YM

-
Details

Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Proteoliposomal ryanodine receptor with calstabin-2 / Type: COMPLEX / Entity ID: #1-#2 / Source: MULTIPLE SOURCES
Molecular weightValue: 2.31 MDa / Experimental value: NO
Source (natural)Organism: Oryctolagus cuniculus (rabbit)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 7.5
Buffer component
IDConc.FormulaBuffer-ID
110 mMHEPES1
2150 mMNaCl1
30.5 mMTCEP1
41 mMEGTA1
SpecimenConc.: 3 mg/ml / Embedding applied: YES / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: GOLD / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R0.6/1
EM embeddingMaterial: Lipid
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 4 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 105000 X / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm / Cs: 2.7 mm
Specimen holderSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 2.5 sec. / Electron dose: 58.34 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Num. of grids imaged: 1 / Num. of real images: 11187

-
Processing

EM software
IDNameVersionCategory
2Leginonimage acquisition
4cryoSPARC2CTF correction
10cryoSPARC2initial Euler assignment
11cryoSPARC2final Euler assignment
12cryoSPARC2classification
13cryoSPARC23D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 2000000
SymmetryPoint symmetry: C4 (4 fold cyclic)
3D reconstructionResolution: 3.36 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 53882 / Num. of class averages: 41 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more