[English] 日本語
Yorodumi
- PDB-7l57: Cryo-EM structure of the SARS-CoV-2 spike glycoprotein bound to F... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7l57
TitleCryo-EM structure of the SARS-CoV-2 spike glycoprotein bound to Fab 2-15
Components
  • (Fab 2-15 variable domain ...) x 2
  • Spike glycoproteinPeplomer
KeywordsVIRAL PROTEIN/Immune System / SARS-CoV-2 / spike / glycoprotein / antibody / VIRAL PROTEIN / VIRAL PROTEIN-Immune System complex
Function / homology
Function and homology information


suppression by virus of host tetherin activity / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated virion attachment to host cell / endoplasmic reticulum-Golgi intermediate compartment / viral translation / host cell surface receptor binding / endocytosis involved in viral entry into host cell / endocytic vesicle membrane / fusion of virus membrane with host plasma membrane / viral protein processing ...suppression by virus of host tetherin activity / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated virion attachment to host cell / endoplasmic reticulum-Golgi intermediate compartment / viral translation / host cell surface receptor binding / endocytosis involved in viral entry into host cell / endocytic vesicle membrane / fusion of virus membrane with host plasma membrane / viral protein processing / suppression by virus of host type I interferon-mediated signaling pathway / fusion of virus membrane with host endosome membrane / viral envelope / viral entry into host cell / go:0009405: / endoplasmic reticulum lumen / host cell plasma membrane / virion membrane / integral component of membrane / identical protein binding
Betacoronavirus spike glycoprotein S1, receptor binding / Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Coronavirus spike glycoprotein S1, C-terminal / Spike glycoprotein S2 superfamily, coronavirus / Spike glycoprotein, betacoronavirus / Spike receptor binding domain superfamily, coronavirus / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like / in:ipr027400: / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike glycoprotein S2, coronavirus
Spike glycoprotein / polysac:dglcpnacb1-4dglcpnacb1-roh: / polysac:dglcpnacb1-2dmanpa1-3dmanpb1-4dglcpnacb1-4dglcpnacb1-roh: / polysac:dglcpnacb1-4dmanpb1-4dglcpnacb1-4dglcpnacb1-roh:
Biological speciesSevere acute respiratory syndrome coronavirus 2
Homo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 5.87 Å
AuthorsRapp, M. / Shapiro, L.
CitationJournal: Cell Rep / Year: 2021
Title: Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class.
Authors: Micah Rapp / Yicheng Guo / Eswar R Reddem / Jian Yu / Lihong Liu / Pengfei Wang / Gabriele Cerutti / Phinikoula Katsamba / Jude S Bimela / Fabiana A Bahna / Seetha M Mannepalli / Baoshan ...Authors: Micah Rapp / Yicheng Guo / Eswar R Reddem / Jian Yu / Lihong Liu / Pengfei Wang / Gabriele Cerutti / Phinikoula Katsamba / Jude S Bimela / Fabiana A Bahna / Seetha M Mannepalli / Baoshan Zhang / Peter D Kwong / Yaoxing Huang / David D Ho / Lawrence Shapiro / Zizhang Sheng /
Abstract: Antibodies with heavy chains that derive from the VH1-2 gene constitute some of the most potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies yet identified. To ...Antibodies with heavy chains that derive from the VH1-2 gene constitute some of the most potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies yet identified. To provide insight into whether these genetic similarities inform common modes of recognition, we determine the structures of the SARS-CoV-2 spike in complex with three VH1-2-derived antibodies: 2-15, 2-43, and H4. All three use VH1-2-encoded motifs to recognize the receptor-binding domain (RBD), with heavy-chain N53I-enhancing binding and light-chain tyrosines recognizing F486. Despite these similarities, class members bind both RBD-up and -down conformations of the spike, with a subset of antibodies using elongated CDRH3s to recognize glycan N343 on a neighboring RBD-a quaternary interaction accommodated by an increase in RBD separation of up to 12 Å. The VH1-2 antibody class, thus, uses modular recognition encoded by modular genetic elements to effect potent neutralization, with the VH-gene component specifying recognition of RBD and the CDRH3 component specifying quaternary interactions.
Validation Report
SummaryFull reportAbout validation report
History
DepositionDec 21, 2020Deposition site: RCSB / Processing site: RCSB
Revision 1.0Apr 14, 2021Provider: repository / Type: Initial release
Revision 1.1Apr 21, 2021Group: Database references / Category: citation / Item: _citation.journal_volume

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-23166
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Spike glycoprotein
B: Spike glycoprotein
C: Spike glycoprotein
H: Fab 2-15 variable domain heavy chain
L: Fab 2-15 variable domain light chain
hetero molecules


Theoretical massNumber of molelcules
Total (without water)464,11945
Polymers452,5495
Non-polymers11,57040
Water0
1


TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Protein , 1 types, 3 molecules ABC

#1: Protein Spike glycoprotein / Peplomer / S glycoprotein / E2 / Peplomer protein


Mass: 142399.375 Da / Num. of mol.: 3 / Mutation: K986P, V987P, R682G, R683S, R685S
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Severe acute respiratory syndrome coronavirus 2
Gene: S, 2 / Production host: Homo sapiens (human) / References: UniProt: P0DTC2

-
Antibody , 2 types, 2 molecules HL

#2: Antibody Fab 2-15 variable domain heavy chain


Mass: 14008.706 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#3: Antibody Fab 2-15 variable domain light chain


Mass: 11342.411 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)

-
Sugars , 4 types, 40 molecules

#4: Polysaccharide
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 424.401 Da / Num. of mol.: 7
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/1,2,1/[a2122h-1b_1-5_2*NCC/3=O]/1-1/a4-b1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}}LINUCSPDB-CARE
#5: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1- ...2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 951.875 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-2DManpa1-3DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/3,5,4/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1a_1-5]/1-1-2-3-1/a4-b1_b4-c1_c3-d1_d2-e1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-Manp]{[(3+1)][a-D-Manp]{[(2+1)][b-D-GlcpNAc]{}}}}}LINUCSPDB-CARE
#6: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta- ...2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 789.734 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/2,4,3/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5]/1-1-2-1/a4-b1_b4-c1_c4-d1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-Manp]{[(4+1)][b-D-GlcpNAc]{}}}}LINUCSPDB-CARE
#7: Sugar...
ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE / N-Acetylglucosamine


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 31 / Source method: obtained synthetically / Formula: C8H15NO6
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0

-
Details

Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Cryo-EM structure of the SARS-CoV-2 spike glycoprotein bound to Fab 2-15
Type: COMPLEX / Entity ID: #1-#3 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 5.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 52.4 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 5.87 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 16590 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Aug 12, 2020. New: Covid-19 info

New: Covid-19 info

  • New page: Covid-19 featured information page in EM Navigator

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

-
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. New: Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force. (see PDBe EMDB page)
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is "EMD"? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB at PDBe / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary. This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated. See below links for details.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software). Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

+
Jun 16, 2017. Omokage search with filter

Omokage search with filter

  • Result of Omokage search can be filtered by keywords and the database types

Related info.:Omokage search

Read more

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more