[English] 日本語

- PDB-6sb0: cryo-EM structure of mTORC1 bound to PRAS40-fused active RagA/C G... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 6sb0 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | cryo-EM structure of mTORC1 bound to PRAS40-fused active RagA/C GTPases | ||||||||||||
![]() |
| ||||||||||||
![]() | SIGNALING PROTEIN / small GTPases / mTORC1 activator / roadblock domain / GTPase domain | ||||||||||||
Function / homology | ![]() Gtr1-Gtr2 GTPase complex / FNIP-folliculin RagC/D GAP / RNA polymerase III type 2 promoter sequence-specific DNA binding / RNA polymerase III type 1 promoter sequence-specific DNA binding / positive regulation of cytoplasmic translational initiation / T-helper 1 cell lineage commitment / positive regulation of pentose-phosphate shunt / regulation of locomotor rhythm / positive regulation of wound healing, spreading of epidermal cells / TORC2 signaling ...Gtr1-Gtr2 GTPase complex / FNIP-folliculin RagC/D GAP / RNA polymerase III type 2 promoter sequence-specific DNA binding / RNA polymerase III type 1 promoter sequence-specific DNA binding / positive regulation of cytoplasmic translational initiation / T-helper 1 cell lineage commitment / positive regulation of pentose-phosphate shunt / regulation of locomotor rhythm / positive regulation of wound healing, spreading of epidermal cells / TORC2 signaling / TORC2 complex / regulation of TORC1 signaling / regulation of membrane permeability / cellular response to leucine starvation / heart valve morphogenesis / negative regulation of lysosome organization / protein localization to lysosome / TFIIIC-class transcription factor complex binding / TORC1 complex / positive regulation of transcription of nucleolar large rRNA by RNA polymerase I / calcineurin-NFAT signaling cascade / voluntary musculoskeletal movement / regulation of TOR signaling / regulation of osteoclast differentiation / positive regulation of odontoblast differentiation / RNA polymerase III type 3 promoter sequence-specific DNA binding / positive regulation of keratinocyte migration / regulation of lysosome organization / Amino acids regulate mTORC1 / cellular response to L-leucine / MTOR signalling / cellular response to nutrient / regulation of autophagosome assembly / Energy dependent regulation of mTOR by LKB1-AMPK / energy reserve metabolic process / TORC1 signaling / ruffle organization / negative regulation of cell size / cellular response to methionine / positive regulation of osteoclast differentiation / cellular response to osmotic stress / inositol hexakisphosphate binding / negative regulation of TOR signaling / protein localization to membrane / protein serine/threonine kinase inhibitor activity / negative regulation of protein localization to nucleus / anoikis / enzyme-substrate adaptor activity / cardiac muscle cell development / AKT phosphorylates targets in the cytosol / negative regulation of calcineurin-NFAT signaling cascade / regulation of myelination / positive regulation of transcription by RNA polymerase III / small GTPase-mediated signal transduction / regulation of cell size / positive regulation of actin filament polymerization / negative regulation of macroautophagy / Macroautophagy / positive regulation of myotube differentiation / protein kinase inhibitor activity / Constitutive Signaling by AKT1 E17K in Cancer / social behavior / oligodendrocyte differentiation / germ cell development / TOR signaling / neurotrophin TRK receptor signaling pathway / behavioral response to pain / mTORC1-mediated signalling / CD28 dependent PI3K/Akt signaling / positive regulation of translational initiation / positive regulation of oligodendrocyte differentiation / protein kinase activator activity / positive regulation of TOR signaling / positive regulation of G1/S transition of mitotic cell cycle / response to amino acid / HSF1-dependent transactivation / regulation of macroautophagy / 'de novo' pyrimidine nucleobase biosynthetic process / cellular response to nutrient levels / neuronal action potential / membrane scission GTPase motor activity / positive regulation of lipid biosynthetic process / heart morphogenesis / positive regulation of epithelial to mesenchymal transition / regulation of cellular response to heat / cardiac muscle contraction / positive regulation of lamellipodium assembly / membrane-membrane adaptor activity / tumor necrosis factor-mediated signaling pathway / positive regulation of stress fiber assembly / phagocytic vesicle / regulation of neuron apoptotic process / cytoskeleton organization / negative regulation of TORC1 signaling / T cell costimulation / positive regulation of endothelial cell proliferation / 14-3-3 protein binding / positive regulation of peptidyl-threonine phosphorylation / positive regulation of TORC1 signaling / endomembrane system Similarity search - Function | ||||||||||||
Biological species | ![]() | ||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 5.5 Å | ||||||||||||
![]() | Anandapadamanaban, M. / Berndt, A. / Masson, G.R. / Perisic, O. / Williams, R.L. | ||||||||||||
Funding support | ![]()
| ||||||||||||
![]() | ![]() Title: Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Authors: Madhanagopal Anandapadamanaban / Glenn R Masson / Olga Perisic / Alex Berndt / Jonathan Kaufman / Chris M Johnson / Balaji Santhanam / Kacper B Rogala / David M Sabatini / Roger L Williams / ![]() ![]() Abstract: The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag ...The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagA/RagC nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes. | ||||||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | Molecule: ![]() ![]() |
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 1.2 MB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 867.7 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 1.6 MB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 1.6 MB | Display | |
Data in XML | ![]() | 167.5 KB | Display | |
Data in CIF | ![]() | 286.5 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 10132MC ![]() 6s6aC ![]() 6s6dC ![]() 6sb2C M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data |
-
Links
-
Assembly
Deposited unit | ![]()
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Noncrystallographic symmetry (NCS) | NCS domain:
NCS domain segments:
NCS ensembles :
NCS oper:
|
-
Components
-Protein , 4 types, 8 molecules ABEHYNTO
#1: Protein | Mass: 287012.031 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() References: UniProt: P42345, non-specific serine/threonine protein kinase #2: Protein | Mass: 35910.090 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() #5: Protein | Mass: 149200.016 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() #6: Protein | Mass: 27412.293 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|
-Ras-related GTP-binding protein ... , 2 types, 4 molecules CIDJ
#3: Protein | Mass: 36600.195 Da / Num. of mol.: 2 / Mutation: Q66L Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #4: Protein | Mass: 44284.832 Da / Num. of mol.: 2 / Mutation: T90N Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|
-Non-polymers , 2 types, 4 molecules 


#7: Chemical | #8: Chemical | |
---|
-Details
Has ligand of interest | Y |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component |
| ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular weight | Value: 1.09 MDa / Experimental value: YES | ||||||||||||||||||||||||
Source (natural) |
| ||||||||||||||||||||||||
Source (recombinant) |
| ||||||||||||||||||||||||
Buffer solution | pH: 7 / Details: 50mM HEPES pH 7.0, 100mM NaCl, 2mM MgCl2, 1mM TCEP | ||||||||||||||||||||||||
Specimen | Conc.: 0.05 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES Details: mTORC1 (mTOR complex 1) is a dimer consists of three proteins: mTOR, mLST8 and RAPTOR. The interacting partner, PRAS40-fused-RagA/C (referred as RagA/C here) forms complex with mTORC1 for ...Details: mTORC1 (mTOR complex 1) is a dimer consists of three proteins: mTOR, mLST8 and RAPTOR. The interacting partner, PRAS40-fused-RagA/C (referred as RagA/C here) forms complex with mTORC1 for its activation. We solved the cryo-EM structure of mTORC1 bound to RagA/C. | ||||||||||||||||||||||||
Specimen support | Grid material: GOLD / Grid mesh size: 200 divisions/in. / Grid type: Quantifoil R2/2 | ||||||||||||||||||||||||
Vitrification | Instrument: FEI VITROBOT MARK III / Cryogen name: ETHANE / Humidity: 95 % |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Cs: 2.7 mm |
Specimen holder | Cryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER |
Image recording | Average exposure time: 1.8 sec. / Electron dose: 40 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
Image scans | Width: 3838 / Height: 3710 / Movie frames/image: 22 / Used frames/image: 1-22 |
-
Processing
Software | Name: REFMAC / Version: 5.8.0238 / Classification: refinement | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM software |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Image processing | Details: The selected images were processed using MotionCor2 within the RELION-3.0.6 package. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Particle selection | Num. of particles selected: 580707 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symmetry | Point symmetry: C1 (asymmetric) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3D reconstruction | Resolution: 5.5 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 90809 / Algorithm: FOURIER SPACE Details: For the final reconstruction of mTORC1-RagA/C structure we used a strategy taking advantage of the relion particle symmetry expand program, and duplicated the C2-refined particles and ...Details: For the final reconstruction of mTORC1-RagA/C structure we used a strategy taking advantage of the relion particle symmetry expand program, and duplicated the C2-refined particles and applied the appropriate rotation and translation to generate a set of monomers. We performed mTORC1-RagA/C 'pseudo-monomer' focussed classification with signal subtraction and obtained a reconstruction of 5.5 A resolution map. This cryo-EM density corresponded to the mTORC1-RagA/C pseudomonomer, where the previously published structure for apo-mTORC1 (PDB ID 6BCX) and our high-resolution crystal structure of RagA/C (6S6A) were fitted with great confidence from our experimental analysis including Pulldown assays, mutational at per-residue level in the binding interface and HDX-Mass Spectrometry. Num. of class averages: 1 / Symmetry type: POINT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic model building | B value: 283 / Protocol: RIGID BODY FIT / Space: REAL Details: Cryo-EM model of mTORC1-RagA/C was refined using REFMAC5 program in CCPEM package, with a composite map of the 3D reconstruction of mTORC1-RagA/C pseudo-monomer (as mentioned in ...Details: Cryo-EM model of mTORC1-RagA/C was refined using REFMAC5 program in CCPEM package, with a composite map of the 3D reconstruction of mTORC1-RagA/C pseudo-monomer (as mentioned in Reconstruction section) of one protomer together with the generated map for the other second protomer of mTORC1-RagA/C. This second protomer of mTORC1-RagA/C map was generated by simply aligning the first 3D reconstructed pseudomonomer map onto the mTORC1 dimer consensus C2 map and then obtained the rotation-translation matrix with CHIMERA and then used Maputils program in CCP4i. From the resulting mTORC1-RagA/C dimer map, the model of mTORC1-RagA/C was built by using previously published structure of apo-mTORC1 (PDB ID 6BCX) and our crystal structure of RagA/C was fitted (PDB ID 6S6A, unreleased). The entire mTORC1-RagA/C final model was refined using REFMAC5 program using the restraints from the crystal structure of RagA/C and previously published mTORC1 structure. Side chains were removed before refinement, since these were not evident in the cryo-EM densities. Separate model refinements were performed against single half-maps, and the resulting models were compared with the other half-maps to confirm the absence of overfitting. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic model building |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Refinement | Resolution: 5.5→321.75 Å / Cor.coef. Fo:Fc: 0.895 / SU B: 104.924 / SU ML: 1.049 Stereochemistry target values: MAXIMUM LIKELIHOOD WITH PHASES
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Solvent computation | Solvent model: PARAMETERS FOR MASK CACLULATION | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Displacement parameters | Biso mean: 288.4 Å2
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Refinement step | Cycle: 1 / Total: 66022 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Refine LS restraints |
|