+Open data
-Basic information
Entry | Database: PDB / ID: 6jv2 | ||||||
---|---|---|---|---|---|---|---|
Title | Structure of RyR2 (P/L-Ca2+/Ca2+-CaM dataset) | ||||||
Components |
| ||||||
Keywords | MEMBRANE PROTEIN / cryo-EM | ||||||
Function / homology | Function and homology information CaM pathway / Cam-PDE 1 activation / Sodium/Calcium exchangers / Calmodulin induced events / Reduction of cytosolic Ca++ levels / CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde / Activation of Ca-permeable Kainate Receptor / Loss of phosphorylation of MECP2 at T308 / CREB1 phosphorylation through the activation of Adenylate Cyclase / PKA activation ...CaM pathway / Cam-PDE 1 activation / Sodium/Calcium exchangers / Calmodulin induced events / Reduction of cytosolic Ca++ levels / CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde / Activation of Ca-permeable Kainate Receptor / Loss of phosphorylation of MECP2 at T308 / CREB1 phosphorylation through the activation of Adenylate Cyclase / PKA activation / negative regulation of high voltage-gated calcium channel activity / CaMK IV-mediated phosphorylation of CREB / Glycogen breakdown (glycogenolysis) / positive regulation of cyclic-nucleotide phosphodiesterase activity / organelle localization by membrane tethering / negative regulation of calcium ion export across plasma membrane / autophagosome membrane docking / mitochondrion-endoplasmic reticulum membrane tethering / CLEC7A (Dectin-1) induces NFAT activation / Activation of RAC1 downstream of NMDARs / regulation of cardiac muscle cell action potential / positive regulation of ryanodine-sensitive calcium-release channel activity / regulation of cell communication by electrical coupling involved in cardiac conduction / Synthesis of IP3 and IP4 in the cytosol / negative regulation of peptidyl-threonine phosphorylation / Negative regulation of NMDA receptor-mediated neuronal transmission / Phase 0 - rapid depolarisation / Unblocking of NMDA receptors, glutamate binding and activation / negative regulation of ryanodine-sensitive calcium-release channel activity / protein phosphatase activator activity / RHO GTPases activate PAKs / Ion transport by P-type ATPases / : / Uptake and function of anthrax toxins / Long-term potentiation / Regulation of MECP2 expression and activity / Calcineurin activates NFAT / catalytic complex / DARPP-32 events / detection of calcium ion / regulation of cardiac muscle contraction / Smooth Muscle Contraction / regulation of ryanodine-sensitive calcium-release channel activity / RHO GTPases activate IQGAPs / regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion / calcium channel inhibitor activity / cellular response to interferon-beta / eNOS activation / Protein methylation / voltage-gated potassium channel complex / Activation of AMPK downstream of NMDARs / regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum / Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation / Ion homeostasis / : / titin binding / positive regulation of protein autophosphorylation / regulation of calcium-mediated signaling / sperm midpiece / calcium channel complex / substantia nigra development / adenylate cyclase activator activity / Ras activation upon Ca2+ influx through NMDA receptor / regulation of heart rate / sarcomere / FCERI mediated Ca+2 mobilization / protein serine/threonine kinase activator activity / FCGR3A-mediated IL10 synthesis / Antigen activates B Cell Receptor (BCR) leading to generation of second messengers / VEGFR2 mediated vascular permeability / regulation of cytokinesis / VEGFR2 mediated cell proliferation / positive regulation of peptidyl-threonine phosphorylation / spindle microtubule / Translocation of SLC2A4 (GLUT4) to the plasma membrane / positive regulation of receptor signaling pathway via JAK-STAT / RAF activation / Transcriptional activation of mitochondrial biogenesis / positive regulation of protein serine/threonine kinase activity / Stimuli-sensing channels / cellular response to type II interferon / spindle pole / response to calcium ion / RAS processing / Signaling by RAF1 mutants / Signaling by moderate kinase activity BRAF mutants / Paradoxical activation of RAF signaling by kinase inactive BRAF / Signaling downstream of RAS mutants / calcium-dependent protein binding / G2/M transition of mitotic cell cycle / Signaling by BRAF and RAF1 fusions / Inactivation, recovery and regulation of the phototransduction cascade / Platelet degranulation / myelin sheath / Ca2+ pathway / RAF/MAP kinase cascade / vesicle / transmembrane transporter binding / Extra-nuclear estrogen signaling / G protein-coupled receptor signaling pathway Similarity search - Function | ||||||
Biological species | Homo sapiens (human) Sus scrofa (pig) | ||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.4 Å | ||||||
Authors | Gong, D.S. / Chi, X.M. / Zhou, G.W. / Huang, G.X.Y. / Lei, J.L. / Yan, N. | ||||||
Citation | Journal: Nature / Year: 2019 Title: Modulation of cardiac ryanodine receptor 2 by calmodulin. Authors: Deshun Gong / Ximin Chi / Jinhong Wei / Gewei Zhou / Gaoxingyu Huang / Lin Zhang / Ruiwu Wang / Jianlin Lei / S R Wayne Chen / Nieng Yan / Abstract: The high-conductance intracellular calcium (Ca) channel RyR2 is essential for the coupling of excitation and contraction in cardiac muscle. Among various modulators, calmodulin (CaM) regulates RyR2 ...The high-conductance intracellular calcium (Ca) channel RyR2 is essential for the coupling of excitation and contraction in cardiac muscle. Among various modulators, calmodulin (CaM) regulates RyR2 in a Ca-dependent manner. Here we reveal the regulatory mechanism by which porcine RyR2 is modulated by human CaM through the structural determination of RyR2 under eight conditions. Apo-CaM and Ca-CaM bind to distinct but overlapping sites in an elongated cleft formed by the handle, helical and central domains. The shift in CaM-binding sites on RyR2 is controlled by Ca binding to CaM, rather than to RyR2. Ca-CaM induces rotations and intradomain shifts of individual central domains, resulting in pore closure of the PCB95 and Ca-activated channel. By contrast, the pore of the ATP, caffeine and Ca-activated channel remains open in the presence of Ca-CaM, which suggests that Ca-CaM is one of the many competing modulators of RyR2 gating. | ||||||
History |
|
-Structure visualization
Movie |
Movie viewer |
---|---|
Structure viewer | Molecule: MolmilJmol/JSmol |
-Downloads & links
-Download
PDBx/mmCIF format | 6jv2.cif.gz | 2.5 MB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb6jv2.ent.gz | Display | PDB format | |
PDBx/mmJSON format | 6jv2.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 6jv2_validation.pdf.gz | 1.2 MB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 6jv2_full_validation.pdf.gz | 1.5 MB | Display | |
Data in XML | 6jv2_validation.xml.gz | 380 KB | Display | |
Data in CIF | 6jv2_validation.cif.gz | 586.8 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/jv/6jv2 ftp://data.pdbj.org/pub/pdb/validation_reports/jv/6jv2 | HTTPS FTP |
-Related structure data
Related structure data | 9889MC 9831C 9833C 9834C 9836C 9837C 9879C 9880C 6ji0C 6ji8C 6jiiC 6jiuC 6jiyC 6jrrC 6jrsC M: map data used to model this data C: citing same article (ref.) |
---|---|
Similar structure data |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
#1: Protein | Mass: 564905.625 Da / Num. of mol.: 4 / Source method: isolated from a natural source / Source: (natural) Sus scrofa (pig) #2: Protein | Mass: 16852.545 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: CALM1, CALM, CAM, CAM1 / Production host: Escherichia coli (E. coli) / References: UniProt: P0DP23 #3: Chemical | ChemComp-ZN / #4: Chemical | ChemComp-CA / |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component | Name: RyR2 in complex with calmodulin / Type: COMPLEX / Entity ID: #1-#2 / Source: NATURAL |
---|---|
Source (natural) | Organism: Sus scrofa (pig) |
Buffer solution | pH: 7.4 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-Electron microscopy imaging
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM |
Electron lens | Mode: BRIGHT FIELD |
Image recording | Electron dose: 50 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-Processing
EM software |
| ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||
Symmetry | Point symmetry: C4 (4 fold cyclic) | ||||||||||||||||
3D reconstruction | Resolution: 4.4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 22876 / Symmetry type: POINT |