[English] 日本語
Yorodumi- PDB-3jak: Cryo-EM structure of GTPgammaS-microtubule co-polymerized with EB... -
+Open data
-Basic information
Entry | Database: PDB / ID: 3jak | ||||||
---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of GTPgammaS-microtubule co-polymerized with EB3 (merged dataset with and without kinesin bound) | ||||||
Components |
| ||||||
Keywords | STRUCTURAL PROTEIN / microtubule / EB3 / GTPgammaS / kinesin | ||||||
Function / homology | Function and homology information mitotic spindle astral microtubule end / protein localization to microtubule / microtubule plus-end / microtubule plus-end binding / Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane / Hedgehog 'off' state / Cilium Assembly / Intraflagellar transport / COPI-dependent Golgi-to-ER retrograde traffic / Carboxyterminal post-translational modifications of tubulin ...mitotic spindle astral microtubule end / protein localization to microtubule / microtubule plus-end / microtubule plus-end binding / Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane / Hedgehog 'off' state / Cilium Assembly / Intraflagellar transport / COPI-dependent Golgi-to-ER retrograde traffic / Carboxyterminal post-translational modifications of tubulin / RHOH GTPase cycle / Sealing of the nuclear envelope (NE) by ESCRT-III / Kinesins / PKR-mediated signaling / The role of GTSE1 in G2/M progression after G2 checkpoint / Aggrephagy / Resolution of Sister Chromatid Cohesion / Mitotic Prometaphase / EML4 and NUDC in mitotic spindle formation / Separation of Sister Chromatids / RHO GTPases activate IQGAPs / RHO GTPases Activate Formins / HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of ligand / MHC class II antigen presentation / microtubule organizing center / Recruitment of NuMA to mitotic centrosomes / COPI-mediated anterograde transport / regulation of microtubule polymerization / positive regulation of cyclin-dependent protein serine/threonine kinase activity / positive regulation of protein kinase activity / spindle midzone / spindle assembly / regulation of microtubule polymerization or depolymerization / structural constituent of cytoskeleton / microtubule cytoskeleton organization / microtubule cytoskeleton / protein localization / mitotic cell cycle / midbody / Hydrolases; Acting on acid anhydrides; Acting on GTP to facilitate cellular and subcellular movement / microtubule binding / microtubule / cell division / GTPase activity / GTP binding / protein kinase binding / positive regulation of DNA-templated transcription / perinuclear region of cytoplasm / identical protein binding / metal ion binding / cytoplasm Similarity search - Function | ||||||
Biological species | Homo sapiens (human) Sus scrofa (pig) | ||||||
Method | ELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 3.3 Å | ||||||
Authors | Zhang, R. / Nogales, E. | ||||||
Citation | Journal: Cell / Year: 2015 Title: Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Authors: Rui Zhang / Gregory M Alushin / Alan Brown / Eva Nogales / Abstract: Microtubule (MT) dynamic instability is driven by GTP hydrolysis and regulated by microtubule-associated proteins, including the plus-end tracking end-binding protein (EB) family. We report six cryo- ...Microtubule (MT) dynamic instability is driven by GTP hydrolysis and regulated by microtubule-associated proteins, including the plus-end tracking end-binding protein (EB) family. We report six cryo-electron microscopy (cryo-EM) structures of MTs, at 3.5 Å or better resolution, bound to GMPCPP, GTPγS, or GDP, either decorated with kinesin motor domain after polymerization or copolymerized with EB3. Subtle changes around the E-site nucleotide during hydrolysis trigger conformational changes in α-tubulin around an "anchor point," leading to global lattice rearrangements and strain generation. Unlike the extended lattice of the GMPCPP-MT, the EB3-bound GTPγS-MT has a compacted lattice that differs in lattice twist from that of the also compacted GDP-MT. These results and the observation that EB3 promotes rapid hydrolysis of GMPCPP suggest that EB proteins modulate structural transitions at growing MT ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. Our findings explain both EBs end-tracking behavior and their effect on microtubule dynamics. | ||||||
History |
|
-Structure visualization
Movie |
Movie viewer |
---|---|
Structure viewer | Molecule: MolmilJmol/JSmol |
-Downloads & links
-Download
PDBx/mmCIF format | 3jak.cif.gz | 1 MB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb3jak.ent.gz | 853.9 KB | Display | PDB format |
PDBx/mmJSON format | 3jak.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 3jak_validation.pdf.gz | 1.6 MB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 3jak_full_validation.pdf.gz | 1.6 MB | Display | |
Data in XML | 3jak_validation.xml.gz | 133.5 KB | Display | |
Data in CIF | 3jak_validation.cif.gz | 203.2 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/ja/3jak ftp://data.pdbj.org/pub/pdb/validation_reports/ja/3jak | HTTPS FTP |
-Related structure data
Related structure data | 6349MC 6347C 6348C 6350C 6351C 6352C 6353C 6354C 6355C 3jalC 3jarC 3jasC 3jatC 3jawC M: map data used to model this data C: citing same article (ref.) |
---|---|
Similar structure data |
-Links
-Assembly
Deposited unit |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symmetry | Helical symmetry: (Circular symmetry: 1 / Dyad axis: no / N subunits divisor: 1 / Num. of operations: 1 / Rise per n subunits: 9.45 Å / Rotation per n subunits: -27.72 °) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Noncrystallographic symmetry (NCS) | NCS domain:
|