: / Herpesvirus large tegument protein deneddylase / Herpesvirus UL36 tegument protein / Herpesvirus UL35 / Herpesvirus UL35 family / Large tegument protein deneddylase / Herpesvirus capsid vertex component 1 / Herpesvirus UL17 protein / Herpesvirus tegument ubiquitin-specific protease (htUSP) domain profile. / Herpesvirus large tegument protein, USP domain ...: / Herpesvirus large tegument protein deneddylase / Herpesvirus UL36 tegument protein / Herpesvirus UL35 / Herpesvirus UL35 family / Large tegument protein deneddylase / Herpesvirus capsid vertex component 1 / Herpesvirus UL17 protein / Herpesvirus tegument ubiquitin-specific protease (htUSP) domain profile. / Herpesvirus large tegument protein, USP domain / Herpesvirus tegument protein, N-terminal conserved region / Herpesvirus UL25 / Herpesvirus UL25 family / Herpesvirus capsid shell protein 1 / Herpesvirus capsid shell protein VP19C / Herpesvirus capsid protein 2 / Herpesvirus VP23 like capsid protein / Herpesvirus major capsid protein / Herpesvirus major capsid protein, upper domain superfamily / Herpes virus major capsid protein / Papain-like cysteine peptidase superfamily 類似検索 - ドメイン・相同性
UL36 / DNA packaging tegument protein / UL17 / Capsid triplex subunit 2 / Major capsid protein / Large tegument protein / Capsid protein / Small capsomere-interacting protein 類似検索 - 構成要素
ジャーナル: Nature / 年: 2019 タイトル: Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. 著者: Yun-Tao Liu / Jonathan Jih / Xinghong Dai / Guo-Qiang Bi / Z Hong Zhou / 要旨: Herpesviruses are enveloped viruses that are prevalent in the human population and are responsible for diverse pathologies, including cold sores, birth defects and cancers. They are characterized by ...Herpesviruses are enveloped viruses that are prevalent in the human population and are responsible for diverse pathologies, including cold sores, birth defects and cancers. They are characterized by a highly pressurized pseudo-icosahedral capsid-with triangulation number (T) equal to 16-encapsidating a tightly packed double-stranded DNA (dsDNA) genome. A key process in the herpesvirus life cycle involves the recruitment of an ATP-driven terminase to a unique portal vertex to recognize, package and cleave concatemeric dsDNA, ultimately giving rise to a pressurized, genome-containing virion. Although this process has been studied in dsDNA phages-with which herpesviruses bear some similarities-a lack of high-resolution in situ structures of genome-packaging machinery has prevented the elucidation of how these multi-step reactions, which require close coordination among multiple actors, occur in an integrated environment. To better define the structural basis of genome packaging and organization in herpes simplex virus type 1 (HSV-1), we developed sequential localized classification and symmetry relaxation methods to process cryo-electron microscopy (cryo-EM) images of HSV-1 virions, which enabled us to decouple and reconstruct hetero-symmetric and asymmetric elements within the pseudo-icosahedral capsid. Here we present in situ structures of the unique portal vertex, genomic termini and ordered dsDNA coils in the capsid spooled around a disordered dsDNA core. We identify tentacle-like helices and a globular complex capping the portal vertex that is not observed in phages, indicative of herpesvirus-specific adaptations in the DNA-packaging process. Finally, our atomic models of portal vertex elements reveal how the fivefold-related capsid accommodates symmetry mismatch imparted by the dodecameric portal-a longstanding mystery in icosahedral viruses-and inform possible DNA-sequence recognition and headful-sensing pathways involved in genome packaging. This work showcases how to resolve symmetry-mismatched elements in a large eukaryotic virus and provides insights into the mechanisms of herpesvirus genome packaging.