National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
R01 GM047795
United States
National Institutes of Health/Office of the Director
S10 OD019995
United States
Citation
Journal: mBio / Year: 2017 Title: Capsids and Genomes of Jumbo-Sized Bacteriophages Reveal the Evolutionary Reach of the HK97 Fold. Authors: Jianfei Hua / Alexis Huet / Carlos A Lopez / Katerina Toropova / Welkin H Pope / Robert L Duda / Roger W Hendrix / James F Conway / Abstract: Large icosahedral viruses that infect bacteria represent an extreme of the coevolution of capsids and the genomes they accommodate. One subset of these large viruses is the jumbophages, tailed phages ...Large icosahedral viruses that infect bacteria represent an extreme of the coevolution of capsids and the genomes they accommodate. One subset of these large viruses is the jumbophages, tailed phages with double-stranded DNA genomes of at least 200,000 bp. We explored the mechanism leading to increased capsid and genome sizes by characterizing structures of several jumbophage capsids and the DNA packaged within them. Capsid structures determined for six jumbophages were consistent with the canonical phage HK97 fold, and three had capsid geometries with novel triangulation numbers (T=25, T=28, and T=52). Packaged DNA (chromosome) sizes were larger than the genome sizes, indicating that all jumbophages use a head-full DNA packaging mechanism. For two phages (PAU and G), the sizes appeared very much larger than their genome length. We used two-dimensional DNA gel electrophoresis to show that these two DNAs migrated abnormally due to base modifications and to allow us to calculate their actual chromosome sizes. Our results support a ratchet model of capsid and genome coevolution whereby mutations lead to increased capsid volume and allow the acquisition of additional genes. Once the added genes and larger capsid are established, mutations that restore the smaller size are disfavored. A large family of viruses share the same fold of the capsid protein as bacteriophage HK97, a virus that infects bacteria. Members of this family use different numbers of the capsid protein to build capsids of different sizes. Here, we examined the structures of extremely large capsids and measured their DNA content relative to the sequenced genome lengths, aiming to understand the process that increases size. We concluded that mutational changes leading to larger capsids become locked in by subsequent changes to the genome organization.
History
Deposition
Nov 29, 2016
-
Header (metadata) release
Feb 8, 2017
-
Map release
Nov 1, 2017
-
Update
Dec 25, 2019
-
Current status
Dec 25, 2019
Processing site: RCSB / Status: Released
-
Structure visualization
Movie
Surface view with section colored by density value
Shell ID: 1 / Name: capsid / Diameter: 1120.0 Å / T number (triangulation number): 25
-
Experimental details
-
Structure determination
Method
cryo EM
Processing
single particle reconstruction
Aggregation state
particle
-
Sample preparation
Concentration
1 mg/mL
Buffer
pH: 7.9 Component:
Concentration
Formula
Name
10.0 mM
C4H11NO3
Tris
10.0 mM
MgSO4
magnesium chloride
Grid
Material: COPPER / Mesh: 400 / Support film - Material: CARBON / Support film - topology: HOLEY / Pretreatment - Type: GLOW DISCHARGE
Vitrification
Cryogen name: ETHANE-PROPANE / Chamber humidity: 90 % / Chamber temperature: 293 K / Instrument: FEI VITROBOT MARK II
-
Electron microscopy
Microscope
FEI POLARA 300
Image recording
Film or detector model: KODAK SO-163 FILM / Digitization - Sampling interval: 6.35 µm / Number real images: 177 / Average exposure time: 2.0 sec. / Average electron dose: 30.0 e/Å2
Electron beam
Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi