National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
1R35GM147261-01
United States
Canadian Institutes of Health Research (CIHR)
437623
Canada
Citation
Journal: Proc Natl Acad Sci U S A / Year: 2025 Title: Interprotomer communication and functional asymmetry in H/ACA snoRNPs. Authors: Hemendra Singh Panwar / Timothy J Vos / Xiaoyan Xie / H Josh Jang / Hyoungjoo Lee / Ryan D Sheldon / Evan J Worden / Ute Kothe / Abstract: H/ACA small nucleolar ribonucleoproteins (H/ACA snoRNPs) facilitate essential cellular processes such as RNA modification, folding, and stability. Here, we present multiple cryo-EM structures of ...H/ACA small nucleolar ribonucleoproteins (H/ACA snoRNPs) facilitate essential cellular processes such as RNA modification, folding, and stability. Here, we present multiple cryo-EM structures of endogenous insect H/ACA snoRNPs containing two protomers assembled on a two-hairpin H/ACA snoRNA. By characterizing key protein-protein and protein-RNA interactions, we reveal the coordination of pseudouridylation activity across the two protomers which explains the predominance of two-hairpin structures in eukaryotic H/ACA snoRNAs. Moreover, we found that several mutations in H/ACA proteins associated with dyskeratosis congenita (DC) directly impair pseudouridine formation suggesting how these mutations disrupt RNA modification and ribosome biogenesis in this disease. Additionally, we uncover coordinated structural changes between Nop10, Nhp2, and the N-terminal extensions of Cbf5 in the 3' protomer that resemble active and inactive conformations and may regulate H/ACA snoRNP activity. In summary, this study provides detailed insight into the structure and function of RNA modification-competent H/ACA snoRNPs, which play pivotal roles in cellular processes including ribosome biogenesis, rRNA folding, (m)RNA modification, and telomere maintenance.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi