cellular response to cholesterol / cholesterol binding / negative regulation of BMP signaling pathway / positive regulation of TORC1 signaling / cellular response to amino acid starvation / transmembrane transport / cognition / intracellular signal transduction / lysosomal membrane / extracellular exosome 類似検索 - 分子機能
Integral membrane protein GPR155, DEP domain / Membrane transport protein / Membrane transport protein / : / Domain found in Dishevelled, Egl-10, and Pleckstrin (DEP) / DEP domain profile. / Domain found in Dishevelled, Egl-10, and Pleckstrin / DEP domain / Winged helix DNA-binding domain superfamily / Winged helix-like DNA-binding domain superfamily 類似検索 - ドメイン・相同性
Lysosomal cholesterol signaling protein 類似検索 - 構成要素
National Natural Science Foundation of China (NSFC)
32171224
中国
引用
ジャーナル: Nat Commun / 年: 2025 タイトル: Structural insights into cholesterol sensing by the LYCHOS-mTORC1 pathway. 著者: Shang Yu / Jin-Hui Ding / Jia-le Wang / Weize Wang / Peng Zuo / Ao Yang / Zonglin Dai / Yuxin Yin / Jin-Peng Sun / Ling Liang / 要旨: The lysosomal cholesterol sensor LYCHOS regulates mTORC1 signaling by coupling cholesterol sensing to GATOR1-Rag GTPase modulation, yet its structural mechanisms remain unclear. Here we report six ...The lysosomal cholesterol sensor LYCHOS regulates mTORC1 signaling by coupling cholesterol sensing to GATOR1-Rag GTPase modulation, yet its structural mechanisms remain unclear. Here we report six cryo-electron microscopy structures of human LYCHOS, depicting five distinct states. These are categorized into a contracted state when complexed with a sufficient amount of the cholesterol analogue cholesteryl hemisuccinate (CHS), and an expanded state when CHS is deficient. The structure forms a homodimer, within each monomer the transmembrane region is divided into a permease-like domain (PLD) and a GPCR-like domain (GLD) with two clearly defined adjacent cholesterol binding sites between them. Cholesterol binding induces a translation of GLD towards PLD and exposes the cytosolic extension of transmembrane 15, which interacts with GATOR1. Our results elucidate the structural mechanism of cholesterol sensing by the mTORC1 pathway, providing a structural basis for developing inhibitors that selectively target mTORC1 pathway by blocking LYCHOS in its expanded state.