- EMDB-61130: GFP bound to 24-mer DARPin-apoferritin model 6c -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-61130
タイトル
GFP bound to 24-mer DARPin-apoferritin model 6c
マップデータ
試料
複合体: GFP bound with the 24-mer DARPin-apoferritin scaffold
タンパク質・ペプチド: Designed ankyrin repeat proteins,Ferritin heavy chain, N-terminally processed
タンパク質・ペプチド: Green fluorescent protein
キーワード
GFP / DARPin / apoferritin / scaffold / METAL BINDING PROTEIN/LUMINESCENT PROTEIN / METAL BINDING PROTEIN-LUMINESCENT PROTEIN complex
機能・相同性
機能・相同性情報
iron ion sequestering activity / ferritin complex / negative regulation of ferroptosis / Scavenging by Class A Receptors / Golgi Associated Vesicle Biogenesis / ferroxidase / autolysosome / ferroxidase activity / negative regulation of fibroblast proliferation / ferric iron binding ...iron ion sequestering activity / ferritin complex / negative regulation of ferroptosis / Scavenging by Class A Receptors / Golgi Associated Vesicle Biogenesis / ferroxidase / autolysosome / ferroxidase activity / negative regulation of fibroblast proliferation / ferric iron binding / autophagosome / bioluminescence / generation of precursor metabolites and energy / Iron uptake and transport / ferrous iron binding / tertiary granule lumen / iron ion transport / ficolin-1-rich granule lumen / intracellular iron ion homeostasis / immune response / iron ion binding / negative regulation of cell population proliferation / Neutrophil degranulation / extracellular exosome / extracellular region / identical protein binding / nucleus / membrane / cytosol / cytoplasm 類似検索 - 分子機能
Ferritin iron-binding regions signature 1. / Ferritin iron-binding regions signature 2. / Ferritin, conserved site / Ferritin / Ferritin-like diiron domain / Ferritin-like diiron domain profile. / Ferritin/DPS protein domain / Ferritin-like domain / Ferritin-like / Green fluorescent protein, GFP ...Ferritin iron-binding regions signature 1. / Ferritin iron-binding regions signature 2. / Ferritin, conserved site / Ferritin / Ferritin-like diiron domain / Ferritin-like diiron domain profile. / Ferritin/DPS protein domain / Ferritin-like domain / Ferritin-like / Green fluorescent protein, GFP / Green fluorescent protein-related / Green fluorescent protein / Green fluorescent protein / Ferritin-like superfamily 類似検索 - ドメイン・相同性
Green fluorescent protein / Ferritin heavy chain 類似検索 - 構成要素
ジャーナル: IUCrJ / 年: 2025 タイトル: A large, general and modular DARPin-apoferritin scaffold enables the visualization of small proteins by cryo-EM. 著者: Xin Lu / Ming Yan / Yang Cai / Xi Song / Huan Chen / Mengtan Du / Zhenyi Wang / Jia'an Li / Liwen Niu / Fuxing Zeng / Quan Hao / Hongmin Zhang / 要旨: Single-particle cryo-electron microscopy (cryo-EM) has emerged as an indispensable technique in structural biology that is pivotal for deciphering protein architectures. However, the medium-sized ...Single-particle cryo-electron microscopy (cryo-EM) has emerged as an indispensable technique in structural biology that is pivotal for deciphering protein architectures. However, the medium-sized proteins (30-40 kDa) that are prevalent in both eukaryotic and prokaryotic organisms often elude the resolving capabilities of contemporary cryo-EM methods. To address this challenge, we engineered a scaffold strategy that securely anchors proteins of interest to a robust, symmetric base via a selective adapter. Our most efficacious constructs, namely models 4 and 6c, feature a designed ankyrin-repeat protein (DARPin) rigidly linked to an octahedral human apoferritin via a helical linker. By utilizing these large, highly symmetric scaffolds (∼1 MDa), we achieved near-atomic-resolution cryo-EM structures of green fluorescent protein (GFP) and maltose-binding protein (MBP), revealing nearly all side-chain densities of GFP and the distinct structural features of MBP. The modular design of our scaffold allows the adaptation of new DARPins through minor amino-acid-sequence modifications, enabling the binding and visualization of a diverse array of proteins. The high symmetry and near-spherical shape of the scaffold not only mitigates the prevalent challenge of preferred particle orientation in cryo-EM but also significantly reduces the demands of image collection and data processing. This approach presents a versatile solution, breaking through the size constraints that have traditionally limited single-particle cryo-EM.