+
Open data
-
Basic information
| Entry | ![]() | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Title | 70S ribosome from RimM-KO | |||||||||||||||
Map data | 70S RimM-KO | |||||||||||||||
Sample |
| |||||||||||||||
Keywords | Ribosome assembly / RimM / initiation factor IF1 / initiation factor IF3 / anti-association / RIBOSOME | |||||||||||||||
| Function / homology | Function and homology informationnegative regulation of cytoplasmic translational initiation / stringent response / transcription antitermination factor activity, RNA binding / ornithine decarboxylase inhibitor activity / misfolded RNA binding / Group I intron splicing / RNA folding / transcriptional attenuation / endoribonuclease inhibitor activity / positive regulation of ribosome biogenesis ...negative regulation of cytoplasmic translational initiation / stringent response / transcription antitermination factor activity, RNA binding / ornithine decarboxylase inhibitor activity / misfolded RNA binding / Group I intron splicing / RNA folding / transcriptional attenuation / endoribonuclease inhibitor activity / positive regulation of ribosome biogenesis / RNA-binding transcription regulator activity / translational termination / negative regulation of cytoplasmic translation / four-way junction DNA binding / DnaA-L2 complex / translation repressor activity / negative regulation of translational initiation / regulation of mRNA stability / negative regulation of DNA-templated DNA replication initiation / mRNA regulatory element binding translation repressor activity / positive regulation of RNA splicing / assembly of large subunit precursor of preribosome / cytosolic ribosome assembly / response to reactive oxygen species / regulation of DNA-templated transcription elongation / ribosome assembly / transcription elongation factor complex / transcription antitermination / DNA endonuclease activity / regulation of cell growth / translational initiation / DNA-templated transcription termination / response to radiation / maintenance of translational fidelity / mRNA 5'-UTR binding / regulation of translation / large ribosomal subunit / ribosome biogenesis / transferase activity / ribosome binding / ribosomal small subunit biogenesis / ribosomal small subunit assembly / 5S rRNA binding / ribosomal large subunit assembly / small ribosomal subunit / small ribosomal subunit rRNA binding / large ribosomal subunit rRNA binding / cytosolic small ribosomal subunit / cytosolic large ribosomal subunit / cytoplasmic translation / tRNA binding / negative regulation of translation / rRNA binding / structural constituent of ribosome / ribosome / translation / hydrolase activity / response to antibiotic / negative regulation of DNA-templated transcription / mRNA binding / DNA binding / RNA binding / zinc ion binding / membrane / cytosol / cytoplasm Similarity search - Function | |||||||||||||||
| Biological species | ![]() | |||||||||||||||
| Method | single particle reconstruction / cryo EM / Resolution: 2.6 Å | |||||||||||||||
Authors | Hassan AH / Demo G | |||||||||||||||
| Funding support | Czech Republic, United States, 4 items
| |||||||||||||||
Citation | Journal: bioRxiv / Year: 2026Title: Mechanistic insights into recovery from growth arrest. Authors: Ahmed Hassan / Yuko Nakano / Howard Gamper / Isao Masuda / Matyas Pinkas / Sathya Nagarajan / Jonathan Dworkin / Gregor Blaha / Ya-Ming Hou / Gabriel Demo / ![]() Abstract: Bacteria survive hostile conditions in clinically relevant conditions by shutting down protein synthesis, but how they restart growth remains poorly understood. Here, we use an Δ strain, which ...Bacteria survive hostile conditions in clinically relevant conditions by shutting down protein synthesis, but how they restart growth remains poorly understood. Here, we use an Δ strain, which exhibits a prolonged growth arrest, as a model to investigate how bacteria recover from this arrested state and restore protein synthesis. RimM is a conserved ribosome maturation factor for the 3'-major (head) domain of the 16S rRNA within the bacterial 30S subunit. The loss of RimM causes a significantly longer delay in recovery than other 30S maturation factors, including RbfA - the presumed primary factor in 30S maturation. Cryo-EM analysis of Δ ribosomes revealed a delayed recruitment of ribosomal proteins to the 30S head domain and increased occupancy of the initiation factors IF1 and IF3, as well as recruitment of the silencing factor RsfS to the 50S subunit. These coordinated changes provide a safeguarding mechanism to block the assembly of premature 70S ribosomes. Notably, while the delayed 30S assembly in Δ reduces the activity of global protein synthesis during the recovery phase, bacteria attempt to compensate for this deficiency by producing higher levels of the ribosomal machinery, indicating a programmatic change in energy allocation to generate the ribosome machinery. These findings highlight the importance of the RimM-assisted assembly of the ribosomal head domain for bacterial recovery from growth arrest. | |||||||||||||||
| History |
|
-
Structure visualization
| Supplemental images |
|---|
-
Downloads & links
-EMDB archive
| Map data | emd_55178.map.gz | 390.6 MB | EMDB map data format | |
|---|---|---|---|---|
| Header (meta data) | emd-55178-v30.xml emd-55178.xml | 73.9 KB 73.9 KB | Display Display | EMDB header |
| Images | emd_55178.png | 74.1 KB | ||
| Filedesc metadata | emd-55178.cif.gz | 13.7 KB | ||
| Others | emd_55178_half_map_1.map.gz emd_55178_half_map_2.map.gz | 191 MB 191 MB | ||
| Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-55178 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-55178 | HTTPS FTP |
-Related structure data
| Related structure data | ![]() 9ss6MC ![]() 9ss0C ![]() 9ss1C ![]() 9ss2C ![]() 9ss4C ![]() 9ss5C M: atomic model generated by this map C: citing same article ( |
|---|---|
| Similar structure data | Similarity search - Function & homology F&H Search |
-
Links
| EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
|---|---|
| Related items in Molecule of the Month |
-
Map
| File | Download / File: emd_55178.map.gz / Format: CCP4 / Size: 421.9 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | 70S RimM-KO | ||||||||||||||||||||||||||||||||||||
| Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
| Voxel size | X=Y=Z: 0.834 Å | ||||||||||||||||||||||||||||||||||||
| Density |
| ||||||||||||||||||||||||||||||||||||
| Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
| Details | EMDB XML:
|
-Supplemental data
-Half map: 70S RimM-KO
| File | emd_55178_half_map_1.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | 70S RimM-KO | ||||||||||||
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-Half map: 70S RimM-KO
| File | emd_55178_half_map_2.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | 70S RimM-KO | ||||||||||||
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-
Sample components
+Entire : 70S ribosome from RimM-KO
+Supramolecule #1: 70S ribosome from RimM-KO
+Macromolecule #1: Small ribosomal subunit protein uS2
+Macromolecule #2: Small ribosomal subunit protein uS3
+Macromolecule #3: Small ribosomal subunit protein uS4
+Macromolecule #4: Small ribosomal subunit protein uS5
+Macromolecule #5: Small ribosomal subunit protein bS6, fully modified isoform
+Macromolecule #6: Small ribosomal subunit protein uS7
+Macromolecule #7: Small ribosomal subunit protein uS8
+Macromolecule #8: Small ribosomal subunit protein uS9
+Macromolecule #9: Small ribosomal subunit protein uS10
+Macromolecule #10: Small ribosomal subunit protein uS11
+Macromolecule #11: Small ribosomal subunit protein uS12
+Macromolecule #12: Small ribosomal subunit protein uS13
+Macromolecule #13: Small ribosomal subunit protein uS14
+Macromolecule #14: Small ribosomal subunit protein uS15
+Macromolecule #15: Small ribosomal subunit protein bS16
+Macromolecule #16: Small ribosomal subunit protein uS17
+Macromolecule #17: Small ribosomal subunit protein bS18
+Macromolecule #18: Small ribosomal subunit protein uS19
+Macromolecule #19: Small ribosomal subunit protein bS20
+Macromolecule #20: Small ribosomal subunit protein bS21
+Macromolecule #21: Large ribosomal subunit protein bL27
+Macromolecule #22: Large ribosomal subunit protein bL28
+Macromolecule #23: Large ribosomal subunit protein uL29
+Macromolecule #24: Large ribosomal subunit protein uL30
+Macromolecule #25: Large ribosomal subunit protein bL31A
+Macromolecule #26: Large ribosomal subunit protein bL32
+Macromolecule #27: Large ribosomal subunit protein bL33
+Macromolecule #28: Large ribosomal subunit protein bL34
+Macromolecule #29: Large ribosomal subunit protein bL35
+Macromolecule #30: Large ribosomal subunit protein bL36A
+Macromolecule #31: Large ribosomal subunit protein uL1
+Macromolecule #32: Large ribosomal subunit protein uL2
+Macromolecule #33: 50S ribosomal protein L3
+Macromolecule #34: Large ribosomal subunit protein uL4
+Macromolecule #35: Large ribosomal subunit protein uL5
+Macromolecule #36: Large ribosomal subunit protein uL6
+Macromolecule #37: Large ribosomal subunit protein bL9
+Macromolecule #38: 50S ribosomal protein L11
+Macromolecule #39: Large ribosomal subunit protein uL13
+Macromolecule #40: Large ribosomal subunit protein uL14
+Macromolecule #41: Large ribosomal subunit protein uL15
+Macromolecule #42: 50S ribosomal protein L16
+Macromolecule #43: Large ribosomal subunit protein bL17
+Macromolecule #44: Large ribosomal subunit protein uL18
+Macromolecule #45: Large ribosomal subunit protein bL19
+Macromolecule #46: Large ribosomal subunit protein bL20
+Macromolecule #47: Large ribosomal subunit protein bL21
+Macromolecule #48: Large ribosomal subunit protein uL22
+Macromolecule #49: Large ribosomal subunit protein uL23
+Macromolecule #50: Large ribosomal subunit protein uL24
+Macromolecule #51: Large ribosomal subunit protein bL25
+Macromolecule #52: 16S Ribosomal RNA
+Macromolecule #53: 23S Ribosomal RNA
+Macromolecule #54: 5S Ribosomal RNA
-Experimental details
-Structure determination
| Method | cryo EM |
|---|---|
Processing | single particle reconstruction |
| Aggregation state | particle |
-
Sample preparation
| Buffer | pH: 7.5 Component:
| ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Vitrification | Cryogen name: ETHANE / Chamber humidity: 95 % / Chamber temperature: 278.15 K / Instrument: FEI VITROBOT MARK IV |
-
Electron microscopy
| Microscope | TFS KRIOS |
|---|---|
| Image recording | Film or detector model: GATAN K3 (6k x 4k) / Number grids imaged: 1 / Number real images: 15893 / Average electron dose: 40.0 e/Å2 |
| Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
| Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.0 µm / Nominal defocus min: 0.5 µm |
| Sample stage | Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN |
| Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
Movie
Controller
About Yorodumi




Keywords
Authors
Czech Republic,
United States, 4 items
Citation



















Z (Sec.)
Y (Row.)
X (Col.)




































Processing
FIELD EMISSION GUN

