National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
1R01GM135550-01
United States
Medical Research Council (MRC, United Kingdom)
MC_EX_MR/T046279/1
United Kingdom
National Science Foundation (NSF, United States)
2014862
United States
Citation
Journal: bioRxiv / Year: 2024 Title: Mechanism of NACHO-mediated assembly of pentameric ligand-gated ion channels. Authors: Yogesh Hooda / Andrija Sente / Ryan M Judy / Luka Smalinskaitė / Sew-Yeu Peak-Chew / Katerina Naydenova / Tomas Malinauskas / Steven W Hardwick / Dimitri Y Chirgadze / A Radu Aricescu / Ramanujan S Hegde / Abstract: Pentameric ligand-gated ion channels (pLGICs) are cell surface receptors of crucial importance for animal physiology. This diverse protein family mediates the ionotropic signals triggered by major ...Pentameric ligand-gated ion channels (pLGICs) are cell surface receptors of crucial importance for animal physiology. This diverse protein family mediates the ionotropic signals triggered by major neurotransmitters and includes γ-aminobutyric acid receptors (GABARs) and acetylcholine receptors (nAChRs). Receptor function is fine-tuned by a myriad of endogenous and pharmacological modulators. A functional pLGIC is built from five homologous, sometimes identical, subunits, each containing a β-scaffold extracellular domain (ECD), a four-helix transmembrane domain (TMD) and intracellular loops of variable length. Although considerable progress has been made in understanding pLGICs in structural and functional terms, the molecular mechanisms that enable their assembly at the endoplasmic reticulum (ER) in a vast range of potential subunit configurations remain unknown. Here, we identified candidate pLGICs assembly factors selectively associated with an unassembled GABAR subunit. Focusing on one of the candidates, we determined the cryo-EM structure of an assembly intermediate containing two α1 subunits of GABAR each bound to an ER-resident membrane protein NACHO. The structure showed how NACHO shields the principal (+) transmembrane interface of α1 subunits containing an immature extracellular conformation. Crosslinking and structure-prediction revealed an adjacent surface on NACHO for β2 subunit interactions to guide stepwise oligimerisation. Mutations of either subunit-interacting surface on NACHO also impaired the formation of homopentameric α7 nAChRs, pointing to a generic framework for pLGIC assembly. Our work provides the foundation for understanding the regulatory principles underlying pLGIC structural diversity.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi