[English] 日本語
Yorodumi- EMDB-51694: Subtomogram average of nucleosomes extracted using Template Learn... -
+
Open data
-
Basic information
| Entry | ![]() | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Title | Subtomogram average of nucleosomes extracted using Template Learning from cryo-tomograms of Drosophila melanogaster embryos | ||||||||||||||||||
Map data | Subtomogram average of nucleosomes extracted using Template Learning from cryo-tomograms of Drosophila melanogaster embryos | ||||||||||||||||||
Sample |
| ||||||||||||||||||
Keywords | Complex / Nucleosome / NUCLEAR PROTEIN | ||||||||||||||||||
| Biological species | ![]() | ||||||||||||||||||
| Method | subtomogram averaging / cryo EM / Resolution: 17.0 Å | ||||||||||||||||||
Authors | Eltsov M / Harastani M | ||||||||||||||||||
| Funding support | France, 5 items
| ||||||||||||||||||
Citation | Journal: Nat Commun / Year: 2025Title: Template Learning: Deep learning with domain randomization for particle picking in cryo-electron tomography. Authors: Mohamad Harastani / Gurudatt Patra / Charles Kervrann / Mikhail Eltsov / ![]() Abstract: Cryo-electron tomography (cryo-ET) enables three-dimensional visualization of biomolecules and cellular components in their near-native state. A key challenge in cryo-ET data analysis is particle ...Cryo-electron tomography (cryo-ET) enables three-dimensional visualization of biomolecules and cellular components in their near-native state. A key challenge in cryo-ET data analysis is particle picking, often performed by template matching, which relies on cross-correlating tomograms with known structural templates. Current deep learning-based methods improve accuracy but require labor-intensive annotated datasets for supervised training. Here, we present Template Learning, a technique that combines deep learning accuracy with the convenience of training on biomolecular templates via domain randomization. Template Learning automates synthetic dataset generation, modeling molecular crowding, structural variability, and data acquisition variation, thereby reducing or eliminating the need for annotated experimental data. We show that models trained using Template Learning, and optionally fine-tuned with experimental data, outperform those trained solely on annotations. Furthermore, Template Learning provides higher precision and more uniform orientation detection than template matching, particularly for small non-spherical particles. Template Learning software is open-source, Python-based, and GPU/CPU parallelized. | ||||||||||||||||||
| History |
|
-
Structure visualization
| Supplemental images |
|---|
-
Downloads & links
-EMDB archive
| Map data | emd_51694.map.gz | 116.1 KB | EMDB map data format | |
|---|---|---|---|---|
| Header (meta data) | emd-51694-v30.xml emd-51694.xml | 15.5 KB 15.5 KB | Display Display | EMDB header |
| Images | emd_51694.png | 32 KB | ||
| Filedesc metadata | emd-51694.cif.gz | 4.4 KB | ||
| Others | emd_51694_half_map_1.map.gz emd_51694_half_map_2.map.gz | 949.9 KB 950.1 KB | ||
| Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-51694 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-51694 | HTTPS FTP |
-Validation report
| Summary document | emd_51694_validation.pdf.gz | 636.9 KB | Display | EMDB validaton report |
|---|---|---|---|---|
| Full document | emd_51694_full_validation.pdf.gz | 636.5 KB | Display | |
| Data in XML | emd_51694_validation.xml.gz | 6.7 KB | Display | |
| Data in CIF | emd_51694_validation.cif.gz | 7.8 KB | Display | |
| Arichive directory | https://ftp.pdbj.org/pub/emdb/validation_reports/EMD-51694 ftp://ftp.pdbj.org/pub/emdb/validation_reports/EMD-51694 | HTTPS FTP |
-Related structure data
| Related structure data | C: citing same article ( |
|---|
-
Links
| EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
|---|
-
Map
| File | Download / File: emd_51694.map.gz / Format: CCP4 / Size: 1 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | Subtomogram average of nucleosomes extracted using Template Learning from cryo-tomograms of Drosophila melanogaster embryos | ||||||||||||||||||||||||||||||||||||
| Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
| Voxel size | X=Y=Z: 4.4 Å | ||||||||||||||||||||||||||||||||||||
| Density |
| ||||||||||||||||||||||||||||||||||||
| Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
| Details | EMDB XML:
|
-Supplemental data
-Half map: half 2
| File | emd_51694_half_map_1.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | half 2 | ||||||||||||
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-Half map: half 1
| File | emd_51694_half_map_2.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | half 1 | ||||||||||||
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-
Sample components
-Entire : Drosophila melanogaster embryos
| Entire | Name: Drosophila melanogaster embryos |
|---|---|
| Components |
|
-Supramolecule #1: Drosophila melanogaster embryos
| Supramolecule | Name: Drosophila melanogaster embryos / type: organelle_or_cellular_component / ID: 1 / Parent: 0 Details: Drosophila melanogaster embryos were high-pressure frozen. Vitreous sections were cut with a nominal thickness of 75 nm and collected onto 200 mesh C-flat grids |
|---|---|
| Source (natural) | Organism: ![]() |
-Experimental details
-Structure determination
| Method | cryo EM |
|---|---|
Processing | subtomogram averaging |
| Aggregation state | cell |
-
Sample preparation
| Buffer | pH: 7.5 |
|---|---|
| Grid | Model: C-flat-2/2 / Material: COPPER / Mesh: 200 |
| Vitrification | Cryogen name: NITROGEN / Details: high-pressure freezing HPM010. |
-
Electron microscopy
| Microscope | TFS KRIOS |
|---|---|
| Image recording | Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: COUNTING / Average electron dose: 1.5 e/Å2 |
| Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
| Electron optics | Illumination mode: OTHER / Imaging mode: BRIGHT FIELD / Nominal defocus max: 3.5 µm / Nominal defocus min: 2.75 µm |
| Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
-
Image processing
| Final reconstruction | Applied symmetry - Point group: C1 (asymmetric) / Algorithm: BACK PROJECTION / Resolution.type: BY AUTHOR / Resolution: 17.0 Å / Resolution method: FSC 0.143 CUT-OFF / Number subtomograms used: 2000 |
|---|---|
| Extraction | Number tomograms: 1 / Number images used: 2000 |
| CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION |
| Final angle assignment | Type: OTHER Details: Exhaustive search based on constrained cross correlation |
Movie
Controller
About Yorodumi



Keywords
Authors
France, 5 items
Citation








Z (Sec.)
Y (Row.)
X (Col.)




































FIELD EMISSION GUN
