+
Open data
-
Basic information
Entry | ![]() | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | 30S-TEC (TEC in expressome position) Inactive state 2 | |||||||||||||||||||||
![]() | ||||||||||||||||||||||
![]() |
| |||||||||||||||||||||
![]() | Transcription / translation / coupling / RIBOSOME | |||||||||||||||||||||
Function / homology | ![]() positive regulation of cytoplasmic translation / RNA polymerase complex / transcription elongation-coupled chromatin remodeling / submerged biofilm formation / cellular response to cell envelope stress / regulation of DNA-templated transcription initiation / bacterial-type flagellum assembly / bacterial-type RNA polymerase core enzyme binding / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding ...positive regulation of cytoplasmic translation / RNA polymerase complex / transcription elongation-coupled chromatin remodeling / submerged biofilm formation / cellular response to cell envelope stress / regulation of DNA-templated transcription initiation / bacterial-type flagellum assembly / bacterial-type RNA polymerase core enzyme binding / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / cytosolic DNA-directed RNA polymerase complex / misfolded RNA binding / Group I intron splicing / RNA folding / bacterial-type flagellum-dependent cell motility / nitrate assimilation / negative regulation of cytoplasmic translation / four-way junction DNA binding / regulation of mRNA stability / DNA-directed RNA polymerase complex / positive regulation of RNA splicing / transcription elongation factor complex / regulation of DNA-templated transcription elongation / DNA endonuclease activity / transcription antitermination / DNA-templated transcription initiation / cell motility / DNA-templated transcription termination / maintenance of translational fidelity / ribonucleoside binding / mRNA 5'-UTR binding / : / : / : / : / : / : / DNA-directed RNA polymerase / regulation of translation / ribosome biogenesis / ribosomal small subunit biogenesis / ribosomal small subunit assembly / response to heat / small ribosomal subunit / protein-containing complex assembly / cytosolic small ribosomal subunit / small ribosomal subunit rRNA binding / intracellular iron ion homeostasis / cytoplasmic translation / tRNA binding / single-stranded RNA binding / protein dimerization activity / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / response to antibiotic / mRNA binding / magnesium ion binding / DNA binding / RNA binding / zinc ion binding / membrane / cytosol / cytoplasm Similarity search - Function | |||||||||||||||||||||
Biological species | ![]() ![]() | |||||||||||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.1 Å | |||||||||||||||||||||
![]() | Rahil H / Weixlbaumer A / Webster MW | |||||||||||||||||||||
Funding support | European Union, ![]() ![]() ![]()
| |||||||||||||||||||||
![]() | ![]() Title: Molecular basis of mRNA delivery to the bacterial ribosome. Authors: Michael W Webster / Adrien Chauvier / Huma Rahil / Andrea Graziadei / Kristine Charles / Nataliya Miropolskaya / Maria Takacs / Charlotte Saint-André / Juri Rappsilber / Nils G Walter / Albert Weixlbaumer / ![]() ![]() ![]() ![]() Abstract: Protein synthesis begins with the formation of a ribosome-messenger RNA (mRNA) complex. In bacteria, the small ribosomal subunit (30) is recruited to many mRNAs through base pairing with the Shine- ...Protein synthesis begins with the formation of a ribosome-messenger RNA (mRNA) complex. In bacteria, the small ribosomal subunit (30) is recruited to many mRNAs through base pairing with the Shine-Dalgarno (SD) sequence and RNA binding by ribosomal protein bS1. Translation can initiate on nascent mRNAs, and RNA polymerase (RNAP) can promote the recruitment of the pioneering 30. Here, we examined 30 recruitment to nascent mRNAs using cryo-electron microscopy, single-molecule fluorescence colocalization, and in-cell cross-linking mass spectrometry. We show that bS1 delivers the mRNA to the ribosome for SD duplex formation and 30 activation. Additionally, bS1 and RNAP stimulate translation initiation. Our work provides a mechanistic framework for how the SD duplex, ribosomal proteins, and RNAP cooperate in 30 recruitment to mRNAs and establish transcription-translation coupling. | |||||||||||||||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 740.4 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 50.5 KB 50.5 KB | Display Display | ![]() |
Images | ![]() | 90.7 KB | ||
Filedesc metadata | ![]() | 14.2 KB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9guwMC ![]() 9gr1C ![]() 9gupC ![]() 9guqC ![]() 9gurC ![]() 9gusC ![]() 9gutC ![]() 9guuC ![]() 9guvC ![]() 9guxC C: citing same article ( M: atomic model generated by this map |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.84 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-
Sample components
+Entire : 30S ribosomal subunit bound to TEC
+Supramolecule #1: 30S ribosomal subunit bound to TEC
+Supramolecule #2: TEC
+Macromolecule #1: 16S ribosomal RNA
+Macromolecule #22: mRNA
+Macromolecule #2: 30S ribosomal protein S1
+Macromolecule #3: 30S ribosomal protein S2
+Macromolecule #4: Small ribosomal subunit protein uS3
+Macromolecule #5: Small ribosomal subunit protein uS4
+Macromolecule #6: 30S ribosomal protein S5
+Macromolecule #7: Small ribosomal subunit protein bS6
+Macromolecule #8: 30S ribosomal protein S7
+Macromolecule #9: 30S ribosomal protein S8
+Macromolecule #10: 30S ribosomal protein S9
+Macromolecule #11: 30S ribosomal protein S10
+Macromolecule #12: 30S ribosomal protein S11
+Macromolecule #13: 30S ribosomal protein S12
+Macromolecule #14: 30S ribosomal protein S13
+Macromolecule #15: 30S ribosomal protein S14
+Macromolecule #16: Small ribosomal subunit protein uS15
+Macromolecule #17: 30S ribosomal protein S16
+Macromolecule #18: 30S ribosomal protein S17
+Macromolecule #19: 30S ribosomal protein S18
+Macromolecule #20: 30S ribosomal protein S19
+Macromolecule #21: 30S ribosomal protein S20
+Macromolecule #23: Transcription termination/antitermination protein NusG
+Macromolecule #24: DNA-directed RNA polymerase subunit alpha
+Macromolecule #25: DNA-directed RNA polymerase subunit beta
+Macromolecule #26: DNA-directed RNA polymerase subunit beta'
+Macromolecule #27: DNA-directed RNA polymerase subunit omega
+Macromolecule #28: Non-Template DNA strand
+Macromolecule #29: Template DNA strand
+Macromolecule #30: MAGNESIUM ION
+Macromolecule #31: ZINC ION
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.4 |
---|---|
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
Microscope | TFS KRIOS |
---|---|
Image recording | Film or detector model: GATAN K2 QUANTUM (4k x 4k) / Average electron dose: 49.95 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.0 µm / Nominal defocus min: 0.8 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
-
Image processing
Startup model | Type of model: PDB ENTRY PDB model - PDB ID: |
---|---|
Final reconstruction | Resolution.type: BY AUTHOR / Resolution: 3.1 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 20703 |
Initial angle assignment | Type: ANGULAR RECONSTITUTION |
Final angle assignment | Type: ANGULAR RECONSTITUTION |