Journal: PLoS Biol / Year: 2025 Title: Structural elucidation of the haptoglobin-hemoglobin clearance mechanism by macrophage scavenger receptor CD163. Authors: Ching-Shin Huang / Hui Wang / Joshua B R White / Oksana Degtjarik / Cindy Huynh / Kristoffer Brannstrom / Mark T Horn / Stephen P Muench / William S Somers / Javier Chaparro-Riggers / Laura ...Authors: Ching-Shin Huang / Hui Wang / Joshua B R White / Oksana Degtjarik / Cindy Huynh / Kristoffer Brannstrom / Mark T Horn / Stephen P Muench / William S Somers / Javier Chaparro-Riggers / Laura Lin / Lidia Mosyak / Abstract: Intravascular hemolysis releases hemoglobin into the bloodstream, which can damage vascular and renal tissues due to its oxidative nature. Circulating haptoglobin acts as a primary defense by binding ...Intravascular hemolysis releases hemoglobin into the bloodstream, which can damage vascular and renal tissues due to its oxidative nature. Circulating haptoglobin acts as a primary defense by binding to free hemoglobin, forming a haptoglobin-hemoglobin (HpHb) complex that is then recognized and cleared by the CD163 scavenger receptor on macrophages. While the function and structure of HpHb complex are mostly well-defined, the molecular mechanism underlying its interaction with CD163 remains unclear. Here we report the cryo-electron microscopy structures of human CD163 in its unliganded state and in its complex with HpHb. These structures reveal that CD163 functions as a trimer, forming a composite binding site at its center for one protomer of the dimeric HpHb, resulting in a 3:1 binding stoichiometry. In the unliganded state, CD163 can also form a trimer, but in an autoinhibitory configuration that occludes the ligand binding site. Widespread electrostatic interactions mediated by calcium ions are pivotal in both pre-ligand and ligand-bound receptor assemblies. This calcium-dependent mechanism enables CD163/HpHb complexes to assemble and, once internalized, disassemble into individual components upon reaching the endosome, where low calcium and lower pH conditions prevail. Collectively, this study elucidates the molecular mechanism by which CD163-mediated endocytosis efficiently clears different isoforms of HpHb.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi