Journal: Nat Struct Mol Biol / Year: 2025 Title: Translational activators align mRNAs at the small mitoribosomal subunit for translation initiation. Authors: Joseph B Bridgers / Andreas Carlström / Dawafuti Sherpa / Mary T Couvillion / Urška Rovšnik / Jingjing Gao / Bowen Wan / Sichen Shao / Martin Ott / L Stirling Churchman / Abstract: Mitochondrial gene expression is essential for oxidative phosphorylation. Mitochondrial-encoded mRNAs are translated by dedicated mitochondrial ribosomes (mitoribosomes), whose regulation remains ...Mitochondrial gene expression is essential for oxidative phosphorylation. Mitochondrial-encoded mRNAs are translated by dedicated mitochondrial ribosomes (mitoribosomes), whose regulation remains elusive. In Saccharomyces cerevisiae, nuclear-encoded mitochondrial translational activators (TAs) facilitate transcript-specific translation by a yet unknown mechanism. Here, we investigated the function of TAs containing RNA-binding pentatricopeptide repeats using selective mitoribosome profiling and cryo-electron microscopy (cryo-EM) structural analysis. These analyses show that TAs exhibit strong selectivity for mitoribosomes initiating on their target transcripts. Moreover, TA-mitoribosome footprints indicate that TAs recruit mitoribosomes proximal to the start codon. Two cryo-EM structures of mRNA-TA complexes bound to mitoribosomes stalled in the post-initiation, pre-elongation state revealed the general mechanism of TA action. Specifically, the TAs bind to structural elements in the 5' untranslated region of the client mRNA and the mRNA channel exit to align the mRNA in the small subunit during initiation. Our findings provide a mechanistic basis for understanding how mitochondria achieve transcript-specific translation initiation without relying on general sequence elements to position mitoribosomes at start codons.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi