[English] 日本語

- EMDB-47472: Cryo-EM structure of yeast CMG helicase stalled at G4-containing ... -
+
Open data
-
Basic information
Entry | ![]() | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of yeast CMG helicase stalled at G4-containing DNA template, state 3 | ||||||||||||
![]() | Composite map of yeast CMG G4 stall state 3 | ||||||||||||
![]() |
| ||||||||||||
![]() | helicase / DNA replication / cell division / fork stalling / translocation / REPLICATION / REPLICATION-DNA complex | ||||||||||||
Function / homology | ![]() maintenance of DNA repeat elements / Unwinding of DNA / replication fork arrest / DNA strand elongation involved in mitotic DNA replication / GINS complex / MCM core complex / Assembly of the pre-replicative complex / Switching of origins to a post-replicative state / MCM complex binding / mitotic DNA replication preinitiation complex assembly ...maintenance of DNA repeat elements / Unwinding of DNA / replication fork arrest / DNA strand elongation involved in mitotic DNA replication / GINS complex / MCM core complex / Assembly of the pre-replicative complex / Switching of origins to a post-replicative state / MCM complex binding / mitotic DNA replication preinitiation complex assembly / nuclear DNA replication / premeiotic DNA replication / pre-replicative complex assembly involved in nuclear cell cycle DNA replication / Activation of the pre-replicative complex / mitotic DNA replication / DNA replication checkpoint signaling / CMG complex / nuclear pre-replicative complex / Activation of ATR in response to replication stress / DNA replication preinitiation complex / MCM complex / replication fork protection complex / double-strand break repair via break-induced replication / single-stranded DNA helicase activity / mitotic DNA replication initiation / silent mating-type cassette heterochromatin formation / regulation of DNA-templated DNA replication initiation / mitotic sister chromatid cohesion / DNA strand elongation involved in DNA replication / replication fork processing / nuclear replication fork / : / DNA replication origin binding / DNA replication initiation / subtelomeric heterochromatin formation / forked DNA-dependent helicase activity / single-stranded 3'-5' DNA helicase activity / four-way junction helicase activity / double-stranded DNA helicase activity / meiotic cell cycle / helicase activity / transcription elongation by RNA polymerase II / DNA-templated DNA replication / heterochromatin formation / single-stranded DNA binding / chromatin extrusion motor activity / ATP-dependent H2AZ histone chaperone activity / ATP-dependent H3-H4 histone complex chaperone activity / DNA helicase / cohesin loader activity / DNA clamp loader activity / DNA replication / chromosome, telomeric region / DNA repair / DNA damage response / chromatin binding / ATP hydrolysis activity / DNA binding / nucleoplasm / ATP binding / nucleus / metal ion binding / cytosol / cytoplasm Similarity search - Function | ||||||||||||
Biological species | ![]() ![]() | ||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.2 Å | ||||||||||||
![]() | Allwein B / Batra S / Remus D / Hite R | ||||||||||||
Funding support | ![]()
| ||||||||||||
![]() | ![]() Title: G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation. Authors: Sahil Batra / Benjamin Allwein / Charanya Kumar / Sujan Devbhandari / Jan-Gert Brüning / Soon Bahng / Chong M Lee / Kenneth J Marians / Richard K Hite / Dirk Remus / ![]() Abstract: DNA G-quadruplexes (G4s) are non-B-form DNA secondary structures that threaten genome stability by impeding DNA replication. To elucidate how G4s induce replication fork arrest, we characterized fork ...DNA G-quadruplexes (G4s) are non-B-form DNA secondary structures that threaten genome stability by impeding DNA replication. To elucidate how G4s induce replication fork arrest, we characterized fork collisions with preformed G4s in the parental DNA using reconstituted yeast and human replisomes. We demonstrate that a single G4 in the leading strand template is sufficient to stall replisomes by arresting the CMG helicase. Cryo-electron microscopy structures of stalled yeast and human CMG complexes reveal that the folded G4 is lodged inside the central CMG channel, arresting translocation. The G4 stabilizes the CMG at distinct translocation intermediates, suggesting an unprecedented helical inchworm mechanism for DNA translocation. These findings illuminate the eukaryotic replication fork mechanism under normal and perturbed conditions. | ||||||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 31.9 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 39.2 KB 39.2 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 14.8 KB | Display | ![]() |
Images | ![]() | 49.2 KB | ||
Masks | ![]() | 343 MB | ![]() | |
Filedesc metadata | ![]() | 12.4 KB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 189.5 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 189 KB | Display | |
Data in XML | ![]() | 503 B | Display | |
Data in CIF | ![]() | 450 B | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9e2yMC ![]() 9e2wC ![]() 9e2xC ![]() 9e2zC C: citing same article ( M: atomic model generated by this map |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Composite map of yeast CMG G4 stall state 3 | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.826 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Mask #1
File | ![]() | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
+Entire : Yeast CMG-CTM G4 stall state 3
+Supramolecule #1: Yeast CMG-CTM G4 stall state 3
+Macromolecule #1: DNA replication complex GINS protein PSF1
+Macromolecule #2: DNA replication complex GINS protein PSF2
+Macromolecule #3: DNA replication complex GINS protein PSF3
+Macromolecule #4: DNA replication complex GINS protein SLD5
+Macromolecule #5: Cell division control protein 45
+Macromolecule #8: DNA replication licensing factor MCM2
+Macromolecule #9: DNA replication licensing factor MCM3
+Macromolecule #10: DNA replication licensing factor MCM4
+Macromolecule #11: Minichromosome maintenance protein 5
+Macromolecule #12: DNA replication licensing factor MCM6
+Macromolecule #13: DNA replication licensing factor MCM7
+Macromolecule #14: Topoisomerase 1-associated factor 1
+Macromolecule #6: Leading strand DNA template
+Macromolecule #7: Lagging strand DNA template
+Macromolecule #15: ADENOSINE-5'-DIPHOSPHATE
+Macromolecule #16: MAGNESIUM ION
+Macromolecule #17: ZINC ION
+Macromolecule #18: ADENOSINE-5'-TRIPHOSPHATE
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | .01 mg/mL | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Buffer | pH: 7.6 Component:
| ||||||||||||||||||||||||
Grid | Model: Quantifoil R1.2/1.3 / Material: GOLD / Mesh: 400 / Support film - Material: GRAPHENE OXIDE / Support film - topology: CONTINUOUS / Support film - Film thickness: 0.5 | ||||||||||||||||||||||||
Vitrification | Cryogen name: ETHANE / Chamber humidity: 95 % / Chamber temperature: 277 K / Instrument: FEI VITROBOT MARK IV Details: Wait time 30 seconds after sample application; blot time 30 seconds with blot force 0. |
-
Electron microscopy
Microscope | TFS KRIOS |
---|---|
Image recording | Film or detector model: GATAN K3 (6k x 4k) / Number grids imaged: 1 / Number real images: 3975 / Average exposure time: 3.0 sec. / Average electron dose: 66.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 2.7 mm / Nominal defocus max: 1.8 µm / Nominal defocus min: 0.8 µm / Nominal magnification: 29000 |
Sample stage | Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
+
Image processing
-Atomic model buiding 1
Initial model | Chain - Source name: Other / Chain - Initial model type: in silico model / Details: ModelAngelo |
---|---|
Details | Initial fitting was performed de novo by ModelAngelo, then iteratively improved with ChimeraX/ISOLDE, Coot, and Phenix real-space refinement algorithms. |
Refinement | Space: REAL / Protocol: AB INITIO MODEL / Overall B value: 87.75 |
Output model | ![]() PDB-9e2y: |