National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
United States
Citation
Journal: Nat Struct Mol Biol / Year: 2025 Title: Cryo-EM structures reveal the molecular mechanism of SUMO E1-E2 thioester transfer. Authors: Anindita Nayak / Digant Nayak / Lijia Jia / Eliza A Ruben / Suryavathi Viswanadhapalli / Priscila Dos Santos Bury / Khaled Mohamed Nassar / Corey H Yu / Anna A Tumanova / Caleb M Stratton / ...Authors: Anindita Nayak / Digant Nayak / Lijia Jia / Eliza A Ruben / Suryavathi Viswanadhapalli / Priscila Dos Santos Bury / Khaled Mohamed Nassar / Corey H Yu / Anna A Tumanova / Caleb M Stratton / Pirouz Ebadi / Dmitri N Ivanov / Patrick Sung / Ratna K Vadlamudi / Elizabeth V Wasmuth / Shaun K Olsen / Abstract: Post-translational modification of proteins by SUMO (small ubiquitin-like modifier) regulates fundamental cellular processes and occurs through the sequential interactions and activities of three ...Post-translational modification of proteins by SUMO (small ubiquitin-like modifier) regulates fundamental cellular processes and occurs through the sequential interactions and activities of three enzymes: E1, E2 and E3. SUMO E1 activates SUMO in a two-step process involving adenylation and thioester bond formation, followed by transfer of SUMO to its dedicated E2 enzyme, UBC9. This process is termed E1-E2 thioester transfer (or transthioesterification). Despite its fundamental importance, the molecular basis for SUMO E1-UBC9 thioester transfer and the molecular rules governing SUMO E1-UBC9 specificity are poorly understood. Here we present cryo-EM reconstructions of human SUMO E1 in complex with UBC9, SUMO1 adenylate and SUMO1 thioester intermediate. Our structures reveal drastic conformational changes that accompany thioester transfer, providing insights into the molecular recognition of UBC9 by SUMO E1 and delineating the rules that govern SUMO E1-UBC9 specificity. Collectively, our structural, biochemical and cell-based studies elucidate the molecular mechanisms by which SUMOylation exerts its essential biological functions.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi