National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
GM122510
United States
National Science Foundation (NSF, United States)
CHE 2203937
United States
Citation
Journal: ACS Cent Sci / Year: 2025 Title: A Collagen Triple Helix without the Superhelical Twist. Authors: Mark A B Kreutzberger / Le Tracy Yu / Thi H Bui / Maria C Hancu / Michael D Purdy / Tomasz Osinski / Peter M Kasson / Edward H Egelman / Jeffrey D Hartgerink / Abstract: Collagens are ubiquitous in biology: functioning as the backbone of the extracellular matrix, forming the primary structural components of key immune system complexes, and fulfilling numerous other ...Collagens are ubiquitous in biology: functioning as the backbone of the extracellular matrix, forming the primary structural components of key immune system complexes, and fulfilling numerous other structural roles in a variety of systems. Despite this, there is limited understanding of how triple helices, the basic collagen structural units, pack into collagenous assemblies. Here we use a peptide self-assembly system to design collagenous assemblies based on the C1q collagen-like region. Using cryo-EM we solved a structure of one assembly to 3.5 Å resolution and built an atomic model. From this, we identify a triple helix conformation with no superhelical twist, starkly in contrast to the canonical right-handed triple helix. This nontwisting region allows for unique hydroxyproline stacking between adjacent triple helices and also results in the formation of an exposed cavity with rings of hydrophobic amino acids packed symmetrically. We find no precedent for such an arrangement of collagen triple helices and designed assemblies with substituted amino acids in various locations to probe key stabilizing amino acid interactions in the complex. The stability of these altered complexes behaves as predicted by our atomic model. Our findings, combined with the extremely limited experimental structural data on triple helix packing in the literature, suggest that collagen and collagen-like assemblies may adopt a far more varied conformational landscape than previously appreciated. We hypothesize that this is particularly likely in packed assemblies of triple helices, adjacent to the termini of these helices and at discontinuities in the required Xaa-Yaa-Gly repeating primary sequence, a discontinuity found in the majority of this class of proteins and in many collagen-associated diseases.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi