- EMDB-42351: In situ HHT and CHX treated human hibernating state without E-tRN... -
+
Open data
ID or keywords:
Loading...
-
Basic information
Entry
Database: EMDB / ID: EMD-42351
Title
In situ HHT and CHX treated human hibernating state without E-tRNA 80S ribosome
Map data
Sample
Complex: In situ HHT and CHX treated human hibernating state without E-tRNA 80S ribosome
Protein or peptide: x 80 types
RNA: x 4 types
Ligand: x 4 types
Keywords
In situ / Ribosome
Function / homology
Function and homology information
Synthesis of diphthamide-EEF2 / translation at postsynapse / response to folic acid / eukaryotic 80S initiation complex / negative regulation of protein neddylation / response to insecticide / negative regulation of endoplasmic reticulum unfolded protein response / regulation of G1 to G0 transition / axial mesoderm development / oxidized pyrimidine DNA binding ...Synthesis of diphthamide-EEF2 / translation at postsynapse / response to folic acid / eukaryotic 80S initiation complex / negative regulation of protein neddylation / response to insecticide / negative regulation of endoplasmic reticulum unfolded protein response / regulation of G1 to G0 transition / axial mesoderm development / oxidized pyrimidine DNA binding / response to TNF agonist / negative regulation of formation of translation preinitiation complex / positive regulation of base-excision repair / regulation of translation involved in cellular response to UV / ribosomal protein import into nucleus / positive regulation of respiratory burst involved in inflammatory response / positive regulation of cytoplasmic translation / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / protein-DNA complex disassembly / positive regulation of gastrulation / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / 90S preribosome assembly / protein tyrosine kinase inhibitor activity / IRE1-RACK1-PP2A complex / positive regulation of endodeoxyribonuclease activity / nucleolus organization / positive regulation of Golgi to plasma membrane protein transport / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / TNFR1-mediated ceramide production / negative regulation of RNA splicing / negative regulation of DNA repair / GAIT complex / positive regulation of DNA damage response, signal transduction by p53 class mediator / TORC2 complex binding / G1 to G0 transition / supercoiled DNA binding / neural crest cell differentiation / positive regulation of ubiquitin-protein transferase activity / NF-kappaB complex / cysteine-type endopeptidase activator activity involved in apoptotic process / aggresome / oxidized purine DNA binding / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / negative regulation of bicellular tight junction assembly / regulation of establishment of cell polarity / ubiquitin-like protein conjugating enzyme binding / middle ear morphogenesis / negative regulation of phagocytosis / rRNA modification in the nucleus and cytosol / Formation of the ternary complex, and subsequently, the 43S complex / erythrocyte homeostasis / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / negative regulation of ubiquitin protein ligase activity / ion channel inhibitor activity / protein kinase A binding / pigmentation / Ribosomal scanning and start codon recognition / homeostatic process / lncRNA binding / Translation initiation complex formation / positive regulation of mitochondrial depolarization / Uptake and function of diphtheria toxin / macrophage chemotaxis / positive regulation of T cell receptor signaling pathway / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / lung morphogenesis / male meiosis I / monocyte chemotaxis / positive regulation of activated T cell proliferation / positive regulation of natural killer cell proliferation / negative regulation of translational frameshifting / Protein hydroxylation / TOR signaling / BH3 domain binding / regulation of cell division / SARS-CoV-1 modulates host translation machinery / mTORC1-mediated signalling / cellular response to ethanol / iron-sulfur cluster binding / Peptide chain elongation / skeletal muscle cell differentiation / Selenocysteine synthesis / Formation of a pool of free 40S subunits / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Eukaryotic Translation Termination / translational elongation / ubiquitin ligase inhibitor activity / blastocyst development / cellular response to actinomycin D / Response of EIF2AK4 (GCN2) to amino acid deficiency / positive regulation of signal transduction by p53 class mediator / negative regulation of ubiquitin-dependent protein catabolic process / SRP-dependent cotranslational protein targeting to membrane / protein serine/threonine kinase inhibitor activity / Viral mRNA Translation / negative regulation of respiratory burst involved in inflammatory response / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) Similarity search - Function
60s Acidic ribosomal protein / 60S acidic ribosomal protein P0 / : / 40S ribosomal protein SA / Elongation Factor G, domain II / Elongation Factor G, domain III / 40S ribosomal protein SA, C-terminal domain / 40S ribosomal protein SA C-terminus / Ribosomal protein L6, N-terminal / Ribosomal protein L6, N-terminal domain ...60s Acidic ribosomal protein / 60S acidic ribosomal protein P0 / : / 40S ribosomal protein SA / Elongation Factor G, domain II / Elongation Factor G, domain III / 40S ribosomal protein SA, C-terminal domain / 40S ribosomal protein SA C-terminus / Ribosomal protein L6, N-terminal / Ribosomal protein L6, N-terminal domain / Ubiquitin-like protein FUBI / Ribosomal protein L30e / Translation elongation factor EFG/EF2, domain IV / Elongation factor G, domain IV / Elongation factor G, domain IV / Elongation factor G C-terminus / Ribosomal protein L28e / Ribosomal L15/L27a, N-terminal / Elongation factor EFG, domain V-like / Elongation factor G C-terminus / Ribosomal protein L2, archaeal-type / 50S ribosomal protein L10, insertion domain superfamily / Ribosomal protein L23 / EF-G domain III/V-like / 60S ribosomal protein L10P, insertion domain / Insertion domain in 60S ribosomal protein L10P / Ribosomal L28e/Mak16 / Ribosomal L28e protein family / Tr-type G domain, conserved site / Translational (tr)-type guanine nucleotide-binding (G) domain signature. / Ribosomal protein L19e, C-terminal domain / metallochaperone-like domain / TRASH domain / : / Ribosomal protein S26e signature. / Ribosomal protein L41 / Ribosomal protein L41 / Ribosomal protein S21e, conserved site / Ribosomal protein S21e signature. / Ribosomal protein L1, conserved site / Ribosomal protein L1 signature. / Ribosomal protein S26e / Ribosomal protein S26e superfamily / Ribosomal protein S26e / : / Ribosomal protein S12e signature. / Ribosomal protein L1 / Ribosomal protein S12e / Ribosomal protein L29e / Ribosomal L29e protein family / Ribosomal protein S19e, conserved site / Ribosomal protein S19e signature. / Ribosomal protein L13e, conserved site / Ribosomal protein L13e signature. / Ribosomal protein S5, eukaryotic/archaeal / Small (40S) ribosomal subunit Asc1/RACK1 / Ribosomal protein S21e / Ribosomal protein S21e superfamily / Ribosomal protein S21e / Ribosomal protein S2, eukaryotic / Translation elongation factor EFTu-like, domain 2 / Ribosomal protein L22e / Ribosomal protein L22e superfamily / Ribosomal L22e protein family / Ribosomal protein L27e, conserved site / S27a-like superfamily / Ribosomal protein L27e signature. / Ribosomal protein L10e, conserved site / Ribosomal protein L10e signature. / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal L38e protein family / Ribosomal protein L10e / 40S Ribosomal protein S10 / Ribosomal protein L1, 3-layer alpha/beta-sandwich / : / Ribosomal protein L44e signature. / Ribosomal protein S7e signature. / Ribosomal protein L24e, conserved site / Ribosomal protein L24e signature. / Ribosomal protein L13e / Ribosomal protein L13e / Ribosomal protein L19/L19e conserved site / Ribosomal protein L19, eukaryotic / Ribosomal protein L19e signature. / Plectin/S10, N-terminal / Plectin/S10 domain / : / 60S ribosomal protein L18a/ L20, eukaryotes / Ribosomal protein L6e signature. / Ribosomal protein S10, eukaryotic/archaeal / Ribosomal protein S8e subdomain, eukaryotes / : / Ribosomal protein S17e, conserved site / Ribosomal protein S17e signature. / Ribosomal protein S25 / S25 ribosomal protein / Ribosomal protein L44e / Ribosomal protein S3Ae, conserved site / Ribosomal protein L44 Similarity search - Domain/homology
Large ribosomal subunit protein eL24 / Large ribosomal subunit protein uL10 / Small ribosomal subunit protein eS17 / Small ribosomal subunit protein uS2 / Elongation factor 2 / Small ribosomal subunit protein uS5 / Large ribosomal subunit protein eL33 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL22 / Small ribosomal subunit protein uS3 ...Large ribosomal subunit protein eL24 / Large ribosomal subunit protein uL10 / Small ribosomal subunit protein eS17 / Small ribosomal subunit protein uS2 / Elongation factor 2 / Small ribosomal subunit protein uS5 / Large ribosomal subunit protein eL33 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL22 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Large ribosomal subunit protein eL13 / Large ribosomal subunit protein uL6 / Large ribosomal subunit protein uL4 / Small ribosomal subunit protein eS19 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL13 / Small ribosomal subunit protein eS27 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein eL21 / Large ribosomal subunit protein eL28 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS7 / Small ribosomal subunit protein eS10 / Large ribosomal subunit protein eL29 / Large ribosomal subunit protein eL34 / Large ribosomal subunit protein eL14 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein eS1 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein eL15 / Large ribosomal subunit protein eL27 / Large ribosomal subunit protein eL43 / Large ribosomal subunit protein eL37 / Small ribosomal subunit protein eS7 / Small ribosomal subunit protein eS8 / Small ribosomal subunit protein uS8 / Small ribosomal subunit protein uS9 / Small ribosomal subunit protein uS11 / Small ribosomal subunit protein uS12 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS15 / Small ribosomal subunit protein uS17 / Large ribosomal subunit protein eL8 / Small ribosomal subunit protein eS4, X isoform / Large ribosomal subunit protein uL23 / Small ribosomal subunit protein eS6 / Large ribosomal subunit protein uL14 / Small ribosomal subunit protein uS19 / Small ribosomal subunit protein eS24 / Small ribosomal subunit protein eS25 / Small ribosomal subunit protein eS26 / Small ribosomal subunit protein eS28 / Ubiquitin-like FUBI-ribosomal protein eS30 fusion protein / Large ribosomal subunit protein eL30 / Large ribosomal subunit protein eL39 / Large ribosomal subunit protein eL31 / Large ribosomal subunit protein uL1 / Large ribosomal subunit protein eL32 / Large ribosomal subunit protein uL5 / Large ribosomal subunit protein uL2 / Small ribosomal subunit protein eS32 / Ubiquitin-ribosomal protein eS31 fusion protein / Ubiquitin-ribosomal protein eL40 fusion protein / Large ribosomal subunit protein eL38 / Small ribosomal subunit protein eS21 / Small ribosomal subunit protein RACK1 / Large ribosomal subunit protein eL42 / Large ribosomal subunit protein eL19 / Large ribosomal subunit protein eL20 / Large ribosomal subunit protein eL6 / Large ribosomal subunit protein eL18 / Large ribosomal subunit protein eL22 / Ribosomal protein uL16-like / Large ribosomal subunit protein eL36 Similarity search - Component
Biological species
Homo sapiens (human)
Method
single particle reconstruction / cryo EM / Resolution: 3.05 Å
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi