Journal: Nat Commun / Year: 2024 Title: A highly conserved SusCD transporter determines the import and species-specific antagonism of Bacteroides ubiquitin homologues. Authors: Ming Tong / Jinghua Xu / Weixun Li / Kun Jiang / Yan Yang / Zhe Chen / Xuyao Jiao / Xiangfeng Meng / Mingyu Wang / Jie Hong / Hongan Long / Shuang-Jiang Liu / Bentley Lim / Xiang Gao / Abstract: Efficient interbacterial competitions and diverse defensive strategies employed by various bacteria play a crucial role in acquiring a hold within a dense microbial community. The gut symbiont ...Efficient interbacterial competitions and diverse defensive strategies employed by various bacteria play a crucial role in acquiring a hold within a dense microbial community. The gut symbiont Bacteroides fragilis secretes an antimicrobial ubiquitin homologue (BfUbb) that targets an essential periplasmic PPIase to drive intraspecies bacterial competition. However, the mechanisms by which BfUbb enters the periplasm and its potential for interspecies antagonism remain poorly understood. Here, we employ transposon mutagenesis and identify a highly conserved TonB-dependent transporter SusCD (designated as ButCD) in B. fragilis as the BfUbb transporter. As a putative protein-related nutrient utilization system, ButCD is widely distributed across diverse Bacteroides species with varying sequence similarity, resulting in distinct import efficiency of Bacteroides ubiquitin homologues (BUbb) and thereby determining the species-specific toxicity of BUbb. Cryo-EM structural and functional investigations of the BfUbb-ButCD complex uncover distinctive structural features of ButC that are crucial for its targeting by BfUbb. Animal studies further demonstrate the specific and efficient elimination of enterotoxigenic B. fragilis (ETBF) in the murine gut by BfUbb, suggesting its potential as a therapeutic against ETBF-associated inflammatory bowel disease and colorectal cancer. Our findings provide a comprehensive elucidation of the species-specific toxicity exhibited by BUbb and explore its potential applications.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi