[English] 日本語

- EMDB-30269: Cryo-EM structure of the hE46K cross-seeded hWT alpha-synuclein fibril -
+
Open data
-
Basic information
Entry | Database: EMDB / ID: EMD-30269 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of the hE46K cross-seeded hWT alpha-synuclein fibril | |||||||||
![]() | ||||||||||
![]() |
| |||||||||
![]() | amyloid fibril / PROTEIN FIBRIL | |||||||||
Function / homology | ![]() negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / response to desipramine / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber ...negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / response to desipramine / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber / regulation of synaptic vesicle recycling / mitochondrial membrane organization / negative regulation of chaperone-mediated autophagy / regulation of reactive oxygen species biosynthetic process / negative regulation of platelet-derived growth factor receptor signaling pathway / positive regulation of protein localization to cell periphery / negative regulation of exocytosis / regulation of glutamate secretion / dopamine biosynthetic process / SNARE complex assembly / regulation of norepinephrine uptake / response to iron(II) ion / positive regulation of neurotransmitter secretion / positive regulation of inositol phosphate biosynthetic process / regulation of locomotion / negative regulation of dopamine metabolic process / regulation of macrophage activation / transporter regulator activity / negative regulation of microtubule polymerization / synaptic vesicle transport / synaptic vesicle priming / dopamine uptake involved in synaptic transmission / protein kinase inhibitor activity / mitochondrial ATP synthesis coupled electron transport / regulation of dopamine secretion / dynein complex binding / positive regulation of receptor recycling / negative regulation of thrombin-activated receptor signaling pathway / cuprous ion binding / nuclear outer membrane / response to magnesium ion / positive regulation of endocytosis / positive regulation of exocytosis / synaptic vesicle exocytosis / kinesin binding / enzyme inhibitor activity / synaptic vesicle endocytosis / cysteine-type endopeptidase inhibitor activity / negative regulation of serotonin uptake / response to type II interferon / regulation of presynapse assembly / alpha-tubulin binding / beta-tubulin binding / phospholipase binding / behavioral response to cocaine / supramolecular fiber organization / cellular response to copper ion / phospholipid metabolic process / cellular response to fibroblast growth factor stimulus / inclusion body / axon terminus / cellular response to epinephrine stimulus / Hsp70 protein binding / response to interleukin-1 / regulation of microtubule cytoskeleton organization / positive regulation of release of sequestered calcium ion into cytosol / SNARE binding / adult locomotory behavior / excitatory postsynaptic potential / phosphoprotein binding / protein tetramerization / microglial cell activation / fatty acid metabolic process / regulation of long-term neuronal synaptic plasticity / ferrous iron binding / synapse organization / protein destabilization / PKR-mediated signaling / phospholipid binding / receptor internalization / tau protein binding / long-term synaptic potentiation / terminal bouton / positive regulation of inflammatory response / synaptic vesicle membrane / actin cytoskeleton / actin binding / cellular response to oxidative stress / growth cone / cell cortex / histone binding / neuron apoptotic process / response to lipopolysaccharide / microtubule binding / molecular adaptor activity / chemical synaptic transmission / amyloid fibril formation / mitochondrial outer membrane / negative regulation of neuron apoptotic process / lysosome Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | helical reconstruction / cryo EM / Resolution: 3.8 Å | |||||||||
![]() | Sun YP / Zhao K | |||||||||
![]() | ![]() Title: Wild-type α-synuclein inherits the structure and exacerbated neuropathology of E46K mutant fibril strain by cross-seeding. Authors: Houfang Long / Weitong Zheng / Yang Liu / Yunpeng Sun / Kun Zhao / Zhenying Liu / Wencheng Xia / Shiran Lv / Zhengtao Liu / Dan Li / Kai-Wen He / Cong Liu / ![]() Abstract: Heterozygous point mutations of α-synuclein (α-syn) have been linked to the early onset and rapid progression of familial Parkinson's diseases (fPD). However, the interplay between hereditary ...Heterozygous point mutations of α-synuclein (α-syn) have been linked to the early onset and rapid progression of familial Parkinson's diseases (fPD). However, the interplay between hereditary mutant and wild-type (WT) α-syn and its role in the exacerbated pathology of α-syn in fPD progression are poorly understood. Here, we find that WT mice inoculated with the human E46K mutant α-syn fibril (hE46K) strain develop early-onset motor deficit and morphologically different α-syn aggregation compared with those inoculated with the human WT fibril (hWT) strain. By using cryo-electron microscopy, we reveal at the near-atomic level that the hE46K strain induces both human and mouse WT α-syn monomers to form the fibril structure of the hE46K strain. Moreover, the induced hWT strain inherits most of the pathological traits of the hE46K strain as well. Our work suggests that the structural and pathological features of mutant strains could be propagated by the WT α-syn in such a way that the mutant pathology would be amplified in fPD. | |||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | EM map: ![]() ![]() ![]() |
Supplemental images |
-
Downloads & links
-EMDB archive
Map data | ![]() | 5.8 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 9.1 KB 9.1 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 8 KB | Display | ![]() |
Images | ![]() | 136.4 KB | ||
Filedesc metadata | ![]() | 4.7 KB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 420.8 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 420.4 KB | Display | |
Data in XML | ![]() | 10.4 KB | Display | |
Data in CIF | ![]() | 13.4 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 7c1dMC M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.356 Å | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
CCP4 map header:
|
-Supplemental data
-
Sample components
-Entire : the hE46K cross-seeded hWT alpha-synuclein fibril
Entire | Name: the hE46K cross-seeded hWT alpha-synuclein fibril |
---|---|
Components |
|
-Supramolecule #1: the hE46K cross-seeded hWT alpha-synuclein fibril
Supramolecule | Name: the hE46K cross-seeded hWT alpha-synuclein fibril / type: organelle_or_cellular_component / ID: 1 / Parent: 0 / Macromolecule list: all |
---|---|
Source (natural) | Organism: ![]() |
-Macromolecule #1: Alpha-synuclein
Macromolecule | Name: Alpha-synuclein / type: protein_or_peptide / ID: 1 / Number of copies: 6 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() |
Molecular weight | Theoretical: 14.476108 KDa |
Recombinant expression | Organism: ![]() ![]() |
Sequence | String: MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH GVATVAEKTK EQVTNVGGAV VTGVTAVAQK TVEGAGSIA AATGFVKKDQ LGKNEEGAPQ EGILEDMPVD PDNEAYEMPS EEGYQDYEPE A UniProtKB: Alpha-synuclein |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | helical reconstruction |
Aggregation state | filament |
-
Sample preparation
Buffer | pH: 7.4 |
---|---|
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Average electron dose: 35.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |