[English] 日本語
Yorodumi
- EMDB-30173: Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisi... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-30173
TitleCryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae nog1delta595-647rei1341-393reh1delta380-430 strain at 4.25 Angstroms resolution(state N2)
Map dataCryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae nog1%u2206C rei1%u2206C reh1%u2206C strain at 4.25 Angstroms resolution(state N2)
Sample
  • Complex: Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae nog1delta595-647rei1341-393reh1delta380-430 strain
Function / homology
Function and homology information


protein-RNA complex remodeling / regulation of ribosomal subunit export from nucleus / exonucleolytic trimming to generate mature 5'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / nuclear exosome (RNase complex) / PeBoW complex / Antigen processing: Ubiquitination & Proteasome degradation / 7S RNA binding / rRNA primary transcript binding / positive regulation of ATP-dependent activity / maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) ...protein-RNA complex remodeling / regulation of ribosomal subunit export from nucleus / exonucleolytic trimming to generate mature 5'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / nuclear exosome (RNase complex) / PeBoW complex / Antigen processing: Ubiquitination & Proteasome degradation / 7S RNA binding / rRNA primary transcript binding / positive regulation of ATP-dependent activity / maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / nuclear-transcribed mRNA catabolic process / pre-mRNA 5'-splice site binding / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / maturation of 5.8S rRNA / proteasome binding / ribosomal subunit export from nucleus / Major pathway of rRNA processing in the nucleolus and cytosol / SRP-dependent cotranslational protein targeting to membrane / 90S preribosome / GTP hydrolysis and joining of the 60S ribosomal subunit / ATPase activator activity / Formation of a pool of free 40S subunits / ribosomal large subunit binding / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / negative regulation of mRNA splicing, via spliceosome / protein-RNA complex assembly / preribosome, large subunit precursor / L13a-mediated translational silencing of Ceruloplasmin expression / ribosomal large subunit export from nucleus / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / regulation of translational fidelity / ribonucleoprotein complex binding / maturation of SSU-rRNA / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / maturation of LSU-rRNA / ribosomal large subunit biogenesis / translation initiation factor activity / nuclear periphery / small-subunit processome / proteasome complex / assembly of large subunit precursor of preribosome / cytosolic ribosome assembly / maintenance of translational fidelity / macroautophagy / protein catabolic process / ribosomal large subunit assembly / rRNA processing / large ribosomal subunit rRNA binding / protein-macromolecule adaptor activity / ribosome biogenesis / cytoplasmic translation / 5S rRNA binding / cytosolic large ribosomal subunit / ATPase binding / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / mRNA binding / GTPase activity / GTP binding / nucleolus / RNA binding / nucleoplasm / identical protein binding / metal ion binding / nucleus / cytosol / cytoplasm
Similarity search - Function
Ribosome biogenesis protein Rpf2 / Ribosome biogenesis protein 15, RNA recognition motif / Ribosome biogenesis protein Nop53/GLTSCR2 / Nop53 (60S ribosomal biogenesis) / Ribosomal biogenesis regulatory protein / Ribosome biogenesis regulatory protein (RRS1) / Nucleolar GTP-binding protein 2, N-terminal domain / Domain of unknown function DUF2423 / Nucleolar GTP-binding protein 2 / NGP1NT (NUC091) domain ...Ribosome biogenesis protein Rpf2 / Ribosome biogenesis protein 15, RNA recognition motif / Ribosome biogenesis protein Nop53/GLTSCR2 / Nop53 (60S ribosomal biogenesis) / Ribosomal biogenesis regulatory protein / Ribosome biogenesis regulatory protein (RRS1) / Nucleolar GTP-binding protein 2, N-terminal domain / Domain of unknown function DUF2423 / Nucleolar GTP-binding protein 2 / NGP1NT (NUC091) domain / Protein of unknown function (DUF2423) / NLE / NLE (NUC135) domain / Pescadillo / Pescadillo N-terminus / GTP-binding protein, orthogonal bundle domain superfamily / Ribosomal biogenesis NSA2 family / BRCT domain, a BRCA1 C-terminus domain / Ribosome assembly factor Mrt4 / NOG, C-terminal / Nucleolar GTP-binding protein 1 / NOGCT (NUC087) domain / Nucleolar GTP-binding protein 1, Rossman-fold domain / NOG1, N-terminal helical domain / Nucleolar GTP-binding protein 1 (NOG1) / NOG1 N-terminal helical domain / Brix domain / Brix domain / Brix domain profile. / Brix / Circularly permuted (CP)-type guanine nucleotide-binding (G) domain / Circularly permuted (CP)-type guanine nucleotide-binding (G) domain profile. / OBG-type guanine nucleotide-binding (G) domain / OBG-type guanine nucleotide-binding (G) domain profile. / Translation initiation factor IF6 / eIF-6 family / translation initiation factor 6 / 50S ribosome-binding GTPase / GTP binding domain / 50S ribosomal protein L10, insertion domain superfamily / 60S ribosomal protein L10P, insertion domain / Insertion domain in 60S ribosomal protein L10P / metallochaperone-like domain / TRASH domain / Ribosomal protein L27e, conserved site / : / breast cancer carboxy-terminal domain / Ribosomal protein L34e, conserved site / Eukaryotic Ribosomal Protein L27, KOW domain / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal protein L27e / Ribosomal protein L27e superfamily / Ribosomal protein L22e / Ribosomal protein L22e superfamily / Ribosomal L38e protein family / Ribosomal L22e protein family / Ribosomal protein L23/L25, N-terminal / 60S ribosomal protein L35 / Ribosomal protein L35Ae, conserved site / Ribosomal protein L30e, conserved site / Ribosomal protein L34Ae / Ribosomal protein L23, N-terminal domain / Ribosomal protein L13e, conserved site / Ribosomal protein L13e signature. / Ribosomal L27e protein family / Ribosomal Protein L6, KOW domain / Ribosomal protein L30/YlxQ / Ribosomal protein L13e / Ribosomal protein L13e / Ribosomal protein L34e / Ribosomal protein L31e, conserved site / Ribosomal protein L37ae / Ribosomal protein L14e domain / 60S ribosomal protein L6E / Ribosomal protein L19, eukaryotic / Ribosomal protein L35A / Ribosomal protein L36e / Ribosomal protein L36e domain superfamily / Ribosomal protein L36e / Ribosomal protein L35A superfamily / Ribosomal protein L7A/L8 / Ribosomal protein L27e signature. / 60S ribosomal protein L4, C-terminal domain / 60S ribosomal protein L18a/ L20, eukaryotes / Ribosomal protein L7, eukaryotic / Ribosomal protein L6e / Ribosomal protein L14 / Ribosomal protein L30, N-terminal / Ribosomal protein L6, conserved site-2 / Ribosomal protein L14, KOW motif / Ribosomal L30 N-terminal domain / Ribosomal protein L19/L19e conserved site / Ribosomal protein L14 / Ribosomal L37ae protein family / Ribosomal protein L35Ae / 50S ribosomal protein L18Ae/60S ribosomal protein L20 and L18a / Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A / 60S ribosomal protein L4 C-terminal domain / Ribosomal protein L19e signature.
Similarity search - Domain/homology
Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein uL6A / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL33A / Large ribosomal subunit protein eL36A / Large ribosomal subunit protein eL15A / Large ribosomal subunit protein eL22A ...Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein uL6A / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL33A / Large ribosomal subunit protein eL36A / Large ribosomal subunit protein eL15A / Large ribosomal subunit protein eL22A / Large ribosomal subunit protein uL5A / Large ribosomal subunit protein eL27A / Large ribosomal subunit protein eL31A / Large ribosomal subunit protein eL20A / Large ribosomal subunit protein eL43A / Large ribosomal subunit protein uL14A / Large ribosomal subunit protein uL2A / Large ribosomal subunit protein eL18A / Large ribosomal subunit protein eL19A / Large ribosomal subunit protein uL29A / Large ribosomal subunit protein uL4A / Large ribosomal subunit protein eL30 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein eL8A / Ribosome assembly protein 4 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein uL13A / Ribosome assembly factor MRT4 / Large ribosomal subunit protein eL14A / Ribosome biogenesis protein RPF2 / Large ribosomal subunit protein eL32 / UPF0642 protein YBL028C / Proteasome-interacting protein CIC1 / Ribosome biogenesis protein NSA2 / Ribosome biogenesis protein RLP7 / Large ribosomal subunit protein eL37A / Large ribosomal subunit protein eL38 / Pescadillo homolog / Nucleolar GTP-binding protein 2 / Ribosome biogenesis protein 15 / Large ribosomal subunit protein eL34A / Large ribosomal subunit protein eL6A / Large ribosomal subunit protein eL21A / Nucleolar GTP-binding protein 1 / Ribosome biogenesis protein RLP24 / Regulator of ribosome biosynthesis / Ribosome biogenesis protein NOP53 / Eukaryotic translation initiation factor 6 / Large ribosomal subunit protein eL13A
Similarity search - Component
Biological speciesSaccharomyces cerevisiae S288C (yeast)
Methodsingle particle reconstruction / cryo EM / Resolution: 4.25 Å
AuthorsLi Y / Wilson DM
Funding support China, 2 items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM028301 China
National Natural Science Foundation of China (NSFC)31725007; 31630087 China
CitationJournal: Nat Commun / Year: 2020
Title: Structural insights into assembly of the ribosomal nascent polypeptide exit tunnel.
Authors: Daniel M Wilson / Yu Li / Amber LaPeruta / Michael Gamalinda / Ning Gao / John L Woolford /
Abstract: The nascent polypeptide exit tunnel (NPET) is a major functional center of 60S ribosomal subunits. However, little is known about how the NPET is constructed during ribosome assembly. We utilized ...The nascent polypeptide exit tunnel (NPET) is a major functional center of 60S ribosomal subunits. However, little is known about how the NPET is constructed during ribosome assembly. We utilized molecular genetics, biochemistry, and cryo-electron microscopy (cryo-EM) to investigate the functions of two NPET-associated proteins, ribosomal protein uL4 and assembly factor Nog1, in NPET assembly. Structures of mutant pre-ribosomes lacking the tunnel domain of uL4 reveal a misassembled NPET, including an aberrantly flexible ribosomal RNA helix 74, resulting in at least three different blocks in 60S assembly. Structures of pre-ribosomes lacking the C-terminal extension of Nog1 demonstrate that this extension scaffolds the tunnel domain of uL4 in the NPET to help maintain stability in the core of pre-60S subunits. Our data reveal that uL4 and Nog1 work together in the maturation of ribosomal RNA helix 74, which is required to ensure proper construction of the NPET and 60S ribosomal subunits.
History
DepositionMar 31, 2020-
Header (metadata) releaseOct 21, 2020-
Map releaseOct 21, 2020-
UpdateOct 28, 2020-
Current statusOct 28, 2020Processing site: PDBj / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.01
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by height
  • Surface level: 0.01
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_30173.map.gz / Format: CCP4 / Size: 209.3 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationCryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae nog1%u2206C rei1%u2206C reh1%u2206C strain at 4.25 Angstroms resolution(state N2)
Voxel sizeX=Y=Z: 1.052 Å
Density
Contour LevelBy AUTHOR: 0.01 / Movie #1: 0.01
Minimum - Maximum-0.014292894 - 0.042002
Average (Standard dev.)0.0005858444 (±0.002764606)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions380380380
Spacing380380380
CellA=B=C: 399.76 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.0521.0521.052
M x/y/z380380380
origin x/y/z0.0000.0000.000
length x/y/z399.760399.760399.760
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS380380380
D min/max/mean-0.0140.0420.001

-
Supplemental data

-
Sample components

-
Entire : Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisi...

EntireName: Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae nog1delta595-647rei1341-393reh1delta380-430 strain
Components
  • Complex: Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae nog1delta595-647rei1341-393reh1delta380-430 strain

-
Supramolecule #1: Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisi...

SupramoleculeName: Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae nog1delta595-647rei1341-393reh1delta380-430 strain
type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#47
Source (natural)Organism: Saccharomyces cerevisiae S288C (yeast)

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 7.5
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: SPOT SCAN / Imaging mode: BRIGHT FIELDBright-field microscopy
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Average electron dose: 1.9 e/Å2
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

Initial angle assignmentType: ANGULAR RECONSTITUTION
Final angle assignmentType: ANGULAR RECONSTITUTION
Final reconstructionResolution.type: BY AUTHOR / Resolution: 4.25 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 16191

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more