negative regulation of cytoplasmic translational initiation / stringent response / misfolded RNA binding / Group I intron splicing / RNA folding / positive regulation of ribosome biogenesis / translational termination / DnaA-L2 complex / negative regulation of translational initiation / negative regulation of DNA-templated DNA replication initiation ...negative regulation of cytoplasmic translational initiation / stringent response / misfolded RNA binding / Group I intron splicing / RNA folding / positive regulation of ribosome biogenesis / translational termination / DnaA-L2 complex / negative regulation of translational initiation / negative regulation of DNA-templated DNA replication initiation / mRNA regulatory element binding translation repressor activity / assembly of large subunit precursor of preribosome / positive regulation of RNA splicing / ribosome assembly / cytosolic ribosome assembly / transcription antitermination / translational initiation / regulation of cell growth / DNA-templated transcription termination / maintenance of translational fidelity / mRNA 5'-UTR binding / large ribosomal subunit / transferase activity / ribosome binding / ribosomal small subunit biogenesis / ribosomal small subunit assembly / small ribosomal subunit / 5S rRNA binding / ribosomal large subunit assembly / cytosolic small ribosomal subunit / large ribosomal subunit rRNA binding / small ribosomal subunit rRNA binding / cytosolic large ribosomal subunit / cytoplasmic translation / tRNA binding / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / ribonucleoprotein complex / response to antibiotic / mRNA binding / RNA binding / zinc ion binding / membrane / cytosol / cytoplasm Similarity search - Function
Ribosomal protein L10, eubacterial, conserved site / Ribosomal protein L10 signature. / Ribosomal protein L10 / : / Ribosomal protein S21, conserved site / Ribosomal protein S21 signature. / Ribosomal protein L11, bacterial-type / Ribosomal protein L25, short-form / Ribosomal protein S14, bacterial/plastid / Ribosomal protein L31 type A ...Ribosomal protein L10, eubacterial, conserved site / Ribosomal protein L10 signature. / Ribosomal protein L10 / : / Ribosomal protein S21, conserved site / Ribosomal protein S21 signature. / Ribosomal protein L11, bacterial-type / Ribosomal protein L25, short-form / Ribosomal protein S14, bacterial/plastid / Ribosomal protein L31 type A / Ribosomal protein S21 superfamily / Ribosomal protein S16, conserved site / Ribosomal protein S16 signature. / Ribosomal protein S21 / Ribosomal protein L31 signature. / Ribosomal protein L31 / Ribosomal protein L31 superfamily / Ribosomal protein L31 / Ribosomal protein S21 / Ribosomal protein L11, conserved site / Ribosomal protein L11 signature. / Ribosomal protein L10-like domain superfamily / Ribosomal protein L10P / Ribosomal protein L10 / Ribosomal protein L16 signature 1. / Ribosomal protein L21, conserved site / Ribosomal protein L21 signature. / Ribosomal protein L16 signature 2. / Ribosomal protein L16, conserved site / Ribosomal protein L6, conserved site / Ribosomal protein L6 signature 1. / Ribosomal protein L9 signature. / : / Ribosomal protein L9, bacteria/chloroplast / Ribosomal protein L9, C-terminal / Ribosomal protein L9, C-terminal domain / Ribosomal protein L9, C-terminal domain superfamily / Ribosomal protein L11, N-terminal / Ribosomal protein L11, N-terminal domain / Ribosomal protein L17 signature. / Ribosomal protein L11/L12 / Ribosomal protein L11, C-terminal / Ribosomal protein L11, C-terminal domain superfamily / Ribosomal protein L11/L12, N-terminal domain superfamily / Ribosomal protein L11/L12 / Ribosomal protein L11, RNA binding domain / Ribosomal L25p family / Ribosomal protein L25 / Ribosomal protein L36 signature. / Ribosomal protein L32p, bacterial type / Ribosomal protein L28/L24 superfamily / Ribosomal protein L25/Gln-tRNA synthetase, N-terminal / Ribosomal protein L25/Gln-tRNA synthetase, anti-codon-binding domain superfamily / Ribosomal protein L9, N-terminal domain superfamily / Ribosomal protein L9 / Ribosomal protein L9, N-terminal / Ribosomal protein L9, N-terminal domain / Ribosomal protein L33, conserved site / Ribosomal protein L33 signature. / Ribosomal protein L35, conserved site / Ribosomal protein L35 signature. / Ribosomal protein L28 / Ribosomal protein L35, non-mitochondrial / Ribosomal protein L5, bacterial-type / Ribosomal protein L18, bacterial-type / : / Ribosomal protein S19, bacterial-type / Ribosomal protein S3, bacterial-type / Ribosomal protein L6, bacterial-type / Ribosomal protein S13, bacterial-type / Ribosomal protein L9/RNase H1, N-terminal / Ribosomal protein S6, conserved site / Ribosomal protein S6 signature. / Ribosomal protein S7, bacterial/organellar-type / Ribosomal protein S9, bacterial/plastid / Ribosomal protein S11, bacterial-type / Ribosomal protein S20 / Ribosomal protein S20 superfamily / Ribosomal protein S20 / Ribosomal protein L36 / Ribosomal protein L36 superfamily / Ribosomal protein L36 / Ribosomal protein S4, bacterial-type / 30S ribosomal protein S17 / Ribosomal protein S5, bacterial-type / Ribosomal protein L19, conserved site / Ribosomal protein L19 signature. / Ribosomal protein L27, conserved site / Ribosomal protein L27 signature. / Ribosomal protein L20 signature. / Ribosomal protein L22, bacterial/chloroplast-type / Ribosomal protein L14P, bacterial-type / Ribosomal protein L34, conserved site / Ribosomal protein L34 signature. / Ribosomal protein S2, bacteria/mitochondria/plastid / Ribosomal protein L2, bacterial/organellar-type / Ribosomal protein L35 / Ribosomal protein L35 superfamily / Ribosomal protein L35 / Ribosomal protein L33 Similarity search - Domain/homology
Large ribosomal subunit protein uL15 / Small ribosomal subunit protein bS18 / Large ribosomal subunit protein bL36 / Small ribosomal subunit protein bS21 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein bL17 / Small ribosomal subunit protein uS9 / 50S ribosomal protein L4 / Small ribosomal subunit protein uS13 ...Large ribosomal subunit protein uL15 / Small ribosomal subunit protein bS18 / Large ribosomal subunit protein bL36 / Small ribosomal subunit protein bS21 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein bL17 / Small ribosomal subunit protein uS9 / 50S ribosomal protein L4 / Small ribosomal subunit protein uS13 / 30S ribosomal protein S17 / Large ribosomal subunit protein uL5 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein bL21 / 50S ribosomal protein L6 / Large ribosomal subunit protein bL20 / Small ribosomal subunit protein uS11 / Small ribosomal subunit protein uS3 / Large ribosomal subunit protein bL34 / Small ribosomal subunit protein bS16 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein bS20 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein bL25 / Large ribosomal subunit protein bL32 / Small ribosomal subunit protein uS8 / Small ribosomal subunit protein uS15 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein bL33 / Small ribosomal subunit protein bS6 / Small ribosomal subunit protein uS7 / Large ribosomal subunit protein uL10 / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein bL27 / Large ribosomal subunit protein bL31 / Large ribosomal subunit protein bL35 / Small ribosomal subunit protein uS12 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS5 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein uL2 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL22 / Small ribosomal subunit protein uS19 / Large ribosomal subunit protein uL13 / Large ribosomal subunit protein uL14 / Small ribosomal subunit protein uS14 / Large ribosomal subunit protein bL19 / Small ribosomal subunit protein uS10 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein bL9 Similarity search - Component
Biological species
Escherichia coli (E. coli) / Escherichia phage Lambda (virus)
Method
single particle reconstruction / cryo EM / Resolution: 3.8 Å
National Institutes of Health/National Center for Research Resources (NIH/NCRR)
United States
Citation
Journal: Cell / Year: 2023 Title: A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Authors: Liang Meng Wee / Alexander B Tong / Alfredo Jose Florez Ariza / Cristhian Cañari-Chumpitaz / Patricia Grob / Eva Nogales / Carlos J Bustamante / Abstract: In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, ...In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi