large ribosomal subunit / transferase activity / 5S rRNA binding / ribosomal large subunit assembly / large ribosomal subunit rRNA binding / cytosolic large ribosomal subunit / cytoplasmic translation / tRNA binding / negative regulation of translation / rRNA binding ...large ribosomal subunit / transferase activity / 5S rRNA binding / ribosomal large subunit assembly / large ribosomal subunit rRNA binding / cytosolic large ribosomal subunit / cytoplasmic translation / tRNA binding / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / ribonucleoprotein complex / mRNA binding / cytoplasm 類似検索 - 分子機能
Ribosomal protein L25, long-form / Ribosomal protein L25, beta domain / Ribosomal protein L25, C-terminal / Ribosomal protein TL5, C-terminal domain / : / : / Ribosomal protein L16 signature 1. / Ribosomal protein L16 signature 2. / Ribosomal protein L16, conserved site / : ...Ribosomal protein L25, long-form / Ribosomal protein L25, beta domain / Ribosomal protein L25, C-terminal / Ribosomal protein TL5, C-terminal domain / : / : / Ribosomal protein L16 signature 1. / Ribosomal protein L16 signature 2. / Ribosomal protein L16, conserved site / : / Ribosomal protein L17 signature. / Ribosomal L25p family / Ribosomal protein L25 / Ribosomal protein L36 signature. / Ribosomal protein L32p, bacterial type / Ribosomal protein L28/L24 superfamily / Ribosomal protein L25/Gln-tRNA synthetase, N-terminal / Ribosomal protein L25/Gln-tRNA synthetase, anti-codon-binding domain superfamily / Ribosomal protein L33, conserved site / Ribosomal protein L33 signature. / Ribosomal protein L35, conserved site / Ribosomal protein L35 signature. / Ribosomal protein L28 / Ribosomal protein L35, non-mitochondrial / Ribosomal protein L18, bacterial-type / : / Ribosomal protein L36 / Ribosomal protein L36 superfamily / Ribosomal protein L36 / Ribosomal protein L19, conserved site / Ribosomal protein L19 signature. / Ribosomal protein L27, conserved site / Ribosomal protein L27 signature. / Ribosomal protein L20 signature. / Ribosomal protein L22, bacterial/chloroplast-type / Ribosomal protein L14P, bacterial-type / Ribosomal protein L34, conserved site / Ribosomal protein L34 signature. / Ribosomal protein L2, bacterial/organellar-type / Ribosomal protein L35 / Ribosomal protein L35 superfamily / Ribosomal protein L35 / Ribosomal protein L33 / Ribosomal protein L33 / Ribosomal L28 family / Ribosomal protein L33 superfamily / Ribosomal protein L16 / Ribosomal protein L28/L24 / Ribosomal protein L18 / Ribosomal L18 of archaea, bacteria, mitoch. and chloroplast / Ribosomal protein L30, bacterial-type / : / L28p-like / Ribosomal protein L27 / Ribosomal L27 protein / Ribosomal protein L20 / Ribosomal L32p protein family / Ribosomal protein L19 / Ribosomal protein L19 / Ribosomal protein L20 / Ribosomal protein L20, C-terminal / Ribosomal protein L19 superfamily / Ribosomal protein L21 / Ribosomal protein L32p / Ribosomal protein L17 / Ribosomal protein L17 superfamily / Ribosomal protein L17 / Ribosomal proteins 50S L24/mitochondrial 39S L24 / Ribosomal protein L21-like / L21-like superfamily / Ribosomal prokaryotic L21 protein / Ribosomal protein L34 / Ribosomal protein L34 / Ribosomal protein L24 / Ribosomal protein L13, bacterial-type / Ribosomal protein L3, bacterial/organelle-type / Ribosomal protein L15, bacterial-type / 50S ribosomal protein uL4 / Ribosomal protein L2 signature. / Ribosomal protein L2, conserved site / : / Ribosomal protein L15, conserved site / Ribosomal protein L15 signature. / Ribosomal protein L10e/L16 / Ribosomal protein L10e/L16 superfamily / Ribosomal protein L16p/L10e / Ribosomal protein L13 signature. / Ribosomal protein L2, domain 3 / Ribosomal protein L13, conserved site / Ribosomal protein L22/L17, conserved site / Ribosomal protein L22 signature. / Ribosomal protein L14P, conserved site / Ribosomal protein L14 signature. / Ribosomal L29 protein / Ribosomal protein L29/L35 / Ribosomal protein L29/L35 superfamily / Ribosomal Proteins L2, C-terminal domain / Ribosomal protein L2, C-terminal / Ribosomal Proteins L2, C-terminal domain / Ribosomal Proteins L2, RNA binding domain 類似検索 - ドメイン・相同性
Large ribosomal subunit protein bL17 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein bL36 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL33 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein bL20 ...Large ribosomal subunit protein bL17 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein bL36 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL33 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein uL2 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein bL35 / Large ribosomal subunit protein bL27 / Large ribosomal subunit protein uL22 / Large ribosomal subunit protein bL25 / 50S ribosomal protein L4 / 50S ribosomal protein L29 / Large ribosomal subunit protein bL21 / Large ribosomal subunit protein bL34 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL13 / Large ribosomal subunit protein uL30 類似検索 - 構成要素
National Health and Medical Research Council (NHMRC, Australia)
1092262
オーストラリア
Australian Research Council (ARC)
170103567
オーストラリア
引用
ジャーナル: Microbiol Spectr / 年: 2022 タイトル: A Structurally Characterized Evolutionary Escape Route from Treatment with the Antibiotic Linezolid. 著者: Laura Perlaza-Jiménez / Kher-Shing Tan / Sarah J Piper / Rachel M Johnson / Rebecca S Bamert / Christopher J Stubenrauch / Alexander Wright / David Lupton / Trevor Lithgow / Matthew J Belousoff / 要旨: Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the ...Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the oxazolidinone family, of which linezolid is the first member to see regular use in the clinic. Here, we report a short time scale selection experiment in which strains of MRSA were subjected to linezolid treatment. Clonal isolates which had evolved a linezolid-resistant phenotype were characterized by whole-genome sequencing. Linezolid-resistant mutants were identified which had accumulated mutations in the ribosomal protein uL3. Multiple clones which had two mutations in uL3 exhibited resistance to linezolid, 2-fold higher than the clinical breakpoint. Ribosomes from this strain were isolated and subjected to single-particle cryo-electron microscopic analysis and compared to the ribosomes from the parent strain. We found that the mutations in uL3 lead to a rearrangement of a loop that makes contact with Helix 90, propagating a structural change over 15 Å away. This distal change swings nucleotide U2504 into the binding site of the antibiotic, causing linezolid resistance. Antibiotic resistance poses a critical problem to human health and decreases the utility of these lifesaving drugs. Of particular concern is the "superbug" methicillin-resistant Staphylococcus aureus (MRSA), for which treatment of infection requires the use of last-line antibiotics, including linezolid. In this paper, we characterize the atomic rearrangements which the ribosome, the target of linezolid, undergoes during its evolutionary journey toward becoming drug resistant. Using cryo-electron microscopy, we describe a particular molecular mechanism which MRSA uses to become resistant to linezolid.