[English] 日本語
Yorodumi
- EMDB-24306: Structure of the p97(R155H) dodecamer II -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-24306
TitleStructure of the p97(R155H) dodecamer II
Map dataStructure of the p97(R155H) dodecamer II
Sample
  • Complex: p97 R155H mutant
    • Protein or peptide: p97 R155H mutant in dodecameric form
Function / homology
Function and homology information


positive regulation of Lys63-specific deubiquitinase activity / flavin adenine dinucleotide catabolic process / positive regulation of oxidative phosphorylation / VCP-NSFL1C complex / cytoplasm protein quality control / endosome to lysosome transport via multivesicular body sorting pathway / endoplasmic reticulum stress-induced pre-emptive quality control / cellular response to arsenite ion / Derlin-1 retrotranslocation complex / BAT3 complex binding ...positive regulation of Lys63-specific deubiquitinase activity / flavin adenine dinucleotide catabolic process / positive regulation of oxidative phosphorylation / VCP-NSFL1C complex / cytoplasm protein quality control / endosome to lysosome transport via multivesicular body sorting pathway / endoplasmic reticulum stress-induced pre-emptive quality control / cellular response to arsenite ion / Derlin-1 retrotranslocation complex / BAT3 complex binding / protein-DNA covalent cross-linking repair / positive regulation of protein K63-linked deubiquitination / deubiquitinase activator activity / ubiquitin-modified protein reader activity / regulation of protein localization to chromatin / aggresome assembly / NADH metabolic process / mitotic spindle disassembly / VCP-NPL4-UFD1 AAA ATPase complex / vesicle-fusing ATPase / cellular response to misfolded protein / stress granule disassembly / negative regulation of protein localization to chromatin / positive regulation of mitochondrial membrane potential / retrograde protein transport, ER to cytosol / K48-linked polyubiquitin modification-dependent protein binding / regulation of aerobic respiration / regulation of synapse organization / positive regulation of ATP biosynthetic process / ATPase complex / ubiquitin-specific protease binding / ubiquitin-like protein ligase binding / MHC class I protein binding / RHOH GTPase cycle / polyubiquitin modification-dependent protein binding / autophagosome maturation / HSF1 activation / negative regulation of hippo signaling / endoplasmic reticulum to Golgi vesicle-mediated transport / translesion synthesis / proteasomal protein catabolic process / interstrand cross-link repair / Protein methylation / ATP metabolic process / negative regulation of smoothened signaling pathway / endoplasmic reticulum unfolded protein response / ERAD pathway / Attachment and Entry / proteasome complex / viral genome replication / lipid droplet / Josephin domain DUBs / N-glycan trimming in the ER and Calnexin/Calreticulin cycle / macroautophagy / Hh mutants are degraded by ERAD / Hedgehog ligand biogenesis / Defective CFTR causes cystic fibrosis / ADP binding / Translesion Synthesis by POLH / establishment of protein localization / positive regulation of protein-containing complex assembly / ABC-family proteins mediated transport / : / autophagy / Aggrephagy / cytoplasmic stress granule / positive regulation of non-canonical NF-kappaB signal transduction / positive regulation of protein catabolic process / azurophil granule lumen / KEAP1-NFE2L2 pathway / positive regulation of canonical Wnt signaling pathway / Ovarian tumor domain proteases / double-strand break repair / positive regulation of proteasomal ubiquitin-dependent protein catabolic process / E3 ubiquitin ligases ubiquitinate target proteins / Neddylation / site of double-strand break / cellular response to heat / ubiquitin-dependent protein catabolic process / protein phosphatase binding / secretory granule lumen / regulation of apoptotic process / proteasome-mediated ubiquitin-dependent protein catabolic process / ficolin-1-rich granule lumen / Attachment and Entry / protein ubiquitination / protein domain specific binding / intracellular membrane-bounded organelle / DNA repair / lipid binding / glutamatergic synapse / ubiquitin protein ligase binding / DNA damage response / Neutrophil degranulation / endoplasmic reticulum membrane / perinuclear region of cytoplasm / endoplasmic reticulum / ATP hydrolysis activity / protein-containing complex / RNA binding
Similarity search - Function
AAA ATPase, CDC48 family / Cell division protein 48 (CDC48), N-terminal domain / CDC48, N-terminal subdomain / Cell division protein 48 (CDC48) N-terminal domain / CDC48, domain 2 / Cell division protein 48 (CDC48), domain 2 / Cell division protein 48 (CDC48) domain 2 / CDC48 domain 2-like superfamily / : / Aspartate decarboxylase-like domain superfamily ...AAA ATPase, CDC48 family / Cell division protein 48 (CDC48), N-terminal domain / CDC48, N-terminal subdomain / Cell division protein 48 (CDC48) N-terminal domain / CDC48, domain 2 / Cell division protein 48 (CDC48), domain 2 / Cell division protein 48 (CDC48) domain 2 / CDC48 domain 2-like superfamily / : / Aspartate decarboxylase-like domain superfamily / AAA ATPase, AAA+ lid domain / AAA+ lid domain / ATPase, AAA-type, conserved site / AAA-protein family signature. / ATPase family associated with various cellular activities (AAA) / ATPase, AAA-type, core / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
Transitional endoplasmic reticulum ATPase
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 6.1 Å
AuthorsNandi P / Li S / Coulmbres RCA / Wang F / Williams DR / Poh Y-P / Chou T-F / Chiu P-L
Funding support United States, 2 items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)R01NS102279 United States
National Science Foundation (NSF, United States)MRI 1531991 United States
CitationJournal: Int J Mol Sci / Year: 2021
Title: Structural and Functional Analysis of Disease-Linked p97 ATPase Mutant Complexes.
Authors: Purbasha Nandi / Shan Li / Rod Carlo A Columbres / Feng Wang / Dewight R Williams / Yu-Ping Poh / Tsui-Fen Chou / Po-Lin Chiu /
Abstract: IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase ...IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97 with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97 mutant all show up configurations in ADP- or ATPS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97 ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97.
History
DepositionJun 25, 2021-
Header (metadata) releaseAug 25, 2021-
Map releaseAug 25, 2021-
UpdateAug 25, 2021-
Current statusAug 25, 2021Processing site: RCSB / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.132
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by cylindrical radius
  • Surface level: 0.132
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_24306.map.gz / Format: CCP4 / Size: 52.7 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationStructure of the p97(R155H) dodecamer II
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.59 Å/pix.
x 240 pix.
= 381.6 Å
1.59 Å/pix.
x 240 pix.
= 381.6 Å
1.59 Å/pix.
x 240 pix.
= 381.6 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.59 Å
Density
Contour LevelBy AUTHOR: 0.132 / Movie #1: 0.132
Minimum - Maximum-0.14739537 - 0.3873761
Average (Standard dev.)0.00062102085 (±0.025352746)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions240240240
Spacing240240240
CellA=B=C: 381.6 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.591.591.59
M x/y/z240240240
origin x/y/z0.0000.0000.000
length x/y/z381.600381.600381.600
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS240240240
D min/max/mean-0.1470.3870.001

-
Supplemental data

-
Sample components

-
Entire : p97 R155H mutant

EntireName: p97 R155H mutant
Components
  • Complex: p97 R155H mutant
    • Protein or peptide: p97 R155H mutant in dodecameric form

-
Supramolecule #1: p97 R155H mutant

SupramoleculeName: p97 R155H mutant / type: complex / ID: 1 / Parent: 0 / Macromolecule list: all
Source (natural)Organism: Homo sapiens (human)
Recombinant expressionOrganism: Escherichia coli (E. coli)

-
Macromolecule #1: p97 R155H mutant in dodecameric form

MacromoleculeName: p97 R155H mutant in dodecameric form / type: protein_or_peptide / ID: 1 / Enantiomer: LEVO
Source (natural)Organism: Homo sapiens (human)
Recombinant expressionOrganism: Escherichia coli (E. coli)
SequenceString: MASGADSKGD DLSTAILKQK NRPNRLIVDE AINEDNSVVS LSQPKMDELQ LFRGDTVLLK GKKRREAVC IVLSDDTCSD EKIRMNRVVR NNLRVRLGDV ISIQPCPDVK YGKRIHVLPI D DTVEGITG NL FEVYLKP YFL EAYRPI RKGD IFLVH GGMRA VEFK ...String:
MASGADSKGD DLSTAILKQK NRPNRLIVDE AINEDNSVVS LSQPKMDELQ LFRGDTVLLK GKKRREAVC IVLSDDTCSD EKIRMNRVVR NNLRVRLGDV ISIQPCPDVK YGKRIHVLPI D DTVEGITG NL FEVYLKP YFL EAYRPI RKGD IFLVH GGMRA VEFK VVETDPSPYC IVAPDT VIH CEGEPIKRED EEESLNEVGY DDIGGCRKQL AQIKEMVELP LRHPALFKAI GVKPPRG IL LYGPPGTGKT LIARAVANET GAFFFLINGP EIMSKLAGES ESNLRKAFEE AEKNAPAI I FIDELDAIAP KREKTHGEVE RRIVSQLLTL MDGLKQRAHV IVMAATNRPN SIDPALRRF GRFDREVDIG IPDATGRLEI LQIHTKNMKL ADDVDLEQVA NETHGHVGAD LAALCSEAAL QAIRKKMDL IDLEDETIDA EVMNSLAVTM DDFRWALSQS NPSALRETVV EVPQVTWEDI G GLEDVKRE LQELVQYPVE HPDKFLKFGM TPSKGVLFYG PPGCGKTLLA KAIANECQAN FI SIKGPEL LTMWFGESEA NVREIFDKAR QAAPCVLFFD ELDSIAKARG GNIGDGGGAA DRV INQILT EMDGMSTKKN VFIIGATNRP DIIDPAILRP GRLDQLIYIP LPDEKSRVAI LKAN LRKSP VAKDVDLEFL AKMTNGFSGA DLTEICQRAC KLAIRESIES EIRRERERQT NPSAM EVEE DDPVPEIRRD HFEEAMRFAR RSVSDNDIRK YEMFAQTLQQ SRGFGSFRFP SGNQGG AGP SQGSGGGTGG SVYTEDNDDD LYG

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 7.4
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Average electron dose: 44.4 e/Å2
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

Final reconstructionResolution.type: BY AUTHOR / Resolution: 6.1 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 2219
Initial angle assignmentType: MAXIMUM LIKELIHOOD
Final angle assignmentType: MAXIMUM LIKELIHOOD

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more