[English] 日本語
Yorodumi
- EMDB-22062: negative stain EM map of SARS-CoV-2 spike in complex with COVA1-22 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-22062
Titlenegative stain EM map of SARS-CoV-2 spike in complex with COVA1-22
Map datanegative stain EM map of SARS-CoV-2 spike in complex with COVA1-22
Sample
  • Complex: SARS-CoV-2 spike in complex with COVA1-22 Fab
Function / homology
Function and homology information


Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / host cell endoplasmic reticulum-Golgi intermediate compartment membrane ...Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / entry receptor-mediated virion attachment to host cell / receptor-mediated endocytosis of virus by host cell / Attachment and Entry / membrane fusion / positive regulation of viral entry into host cell / receptor-mediated virion attachment to host cell / receptor ligand activity / host cell surface receptor binding / fusion of virus membrane with host plasma membrane / fusion of virus membrane with host endosome membrane / viral envelope / symbiont-mediated suppression of host type I interferon-mediated signaling pathway / virion attachment to host cell / SARS-CoV-2 activates/modulates innate and adaptive immune responses / host cell plasma membrane / virion membrane / membrane / identical protein binding / plasma membrane
Similarity search - Function
Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like ...Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like / Betacoronavirus-like spike glycoprotein S1, N-terminal / Spike glycoprotein S2, coronavirus, heptad repeat 1 / Spike glycoprotein S2, coronavirus, heptad repeat 2 / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 2 (HR2) region profile. / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 1 (HR1) region profile. / Spike glycoprotein S2 superfamily, coronavirus / Spike glycoprotein S2, coronavirus / Coronavirus spike glycoprotein S2 / Coronavirus spike glycoprotein S1, C-terminal / Coronavirus spike glycoprotein S1, C-terminal
Similarity search - Domain/homology
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / negative staining / Resolution: 25.0 Å
AuthorsWard AB / Bangaru S / Torres JL
Funding support United States, 1 items
OrganizationGrant numberCountry
Bill & Melinda Gates FoundationOPP1170236 United States
CitationJournal: Science / Year: 2020
Title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability.
Authors: Philip J M Brouwer / Tom G Caniels / Karlijn van der Straten / Jonne L Snitselaar / Yoann Aldon / Sandhya Bangaru / Jonathan L Torres / Nisreen M A Okba / Mathieu Claireaux / Gius Kerster / ...Authors: Philip J M Brouwer / Tom G Caniels / Karlijn van der Straten / Jonne L Snitselaar / Yoann Aldon / Sandhya Bangaru / Jonathan L Torres / Nisreen M A Okba / Mathieu Claireaux / Gius Kerster / Arthur E H Bentlage / Marlies M van Haaren / Denise Guerra / Judith A Burger / Edith E Schermer / Kirsten D Verheul / Niels van der Velde / Alex van der Kooi / Jelle van Schooten / Mariëlle J van Breemen / Tom P L Bijl / Kwinten Sliepen / Aafke Aartse / Ronald Derking / Ilja Bontjer / Neeltje A Kootstra / W Joost Wiersinga / Gestur Vidarsson / Bart L Haagmans / Andrew B Ward / Godelieve J de Bree / Rogier W Sanders / Marit J van Gils /
Abstract: The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a large impact on global health, travel, and economy. Therefore, preventative and therapeutic measures are ...The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a large impact on global health, travel, and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated monoclonal antibodies from three convalescent coronavirus disease 2019 (COVID-19) patients using a SARS-CoV-2 stabilized prefusion spike protein. These antibodies had low levels of somatic hypermutation and showed a strong enrichment in VH1-69, VH3-30-3, and VH1-24 gene usage. A subset of the antibodies was able to potently inhibit authentic SARS-CoV-2 infection at a concentration as low as 0.007 micrograms per milliliter. Competition and electron microscopy studies illustrate that the SARS-CoV-2 spike protein contains multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as non-RBD epitopes. In addition to providing guidance for vaccine design, the antibodies described here are promising candidates for COVID-19 treatment and prevention.
History
DepositionMay 27, 2020-
Header (metadata) releaseJul 1, 2020-
Map releaseJul 1, 2020-
UpdateAug 19, 2020-
Current statusAug 19, 2020Processing site: RCSB / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.012
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by cylindrical radius
  • Surface level: 0.012
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_22062.map.gz / Format: CCP4 / Size: 64 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Annotationnegative stain EM map of SARS-CoV-2 spike in complex with COVA1-22
Voxel sizeX=Y=Z: 2.06 Å
Density
Contour LevelBy AUTHOR: 0.012 / Movie #1: 0.012
Minimum - Maximum-0.025967013 - 0.07245699
Average (Standard dev.)-0.0000424583 (±0.0028586409)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions256256256
Spacing256256256
CellA=B=C: 527.36 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z2.062.062.06
M x/y/z256256256
origin x/y/z0.0000.0000.000
length x/y/z527.360527.360527.360
α/β/γ90.00090.00090.000
start NX/NY/NZ434333
NX/NY/NZ116118137
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS256256256
D min/max/mean-0.0260.072-0.000

-
Supplemental data

-
Sample components

-
Entire : SARS-CoV-2 spike in complex with COVA1-22 Fab

EntireName: SARS-CoV-2 spike in complex with COVA1-22 Fab
Components
  • Complex: SARS-CoV-2 spike in complex with COVA1-22 Fab

-
Supramolecule #1: SARS-CoV-2 spike in complex with COVA1-22 Fab

SupramoleculeName: SARS-CoV-2 spike in complex with COVA1-22 Fab / type: complex / ID: 1 / Parent: 0
Source (natural)Organism: Homo sapiens (human)
Recombinant expressionOrganism: Homo sapiens (human)

-
Experimental details

-
Structure determination

Methodnegative staining
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

Concentration0.02 mg/mL
BufferpH: 7.4
StainingType: NEGATIVE / Material: Uranyl Formate

-
Electron microscopy

MicroscopeFEI TECNAI SPIRIT
Electron beamAcceleration voltage: 120 kV / Electron source: LAB6
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELDBright-field microscopy
Image recordingFilm or detector model: FEI EAGLE (4k x 4k) / Average electron dose: 50.0 e/Å2
Experimental equipment
Model: Tecnai Spirit / Image courtesy: FEI Company

-
Image processing

Initial angle assignmentType: ANGULAR RECONSTITUTION
Final angle assignmentType: ANGULAR RECONSTITUTION
Final reconstructionApplied symmetry - Point group: C1 (asymmetric) / Resolution.type: BY AUTHOR / Resolution: 25.0 Å / Resolution method: FSC 0.5 CUT-OFF / Software - Name: RELION / Number images used: 8114

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more