EMC complex / protein insertion into ER membrane by stop-transfer membrane-anchor sequence / protein folding in endoplasmic reticulum / phospholipid transport / autophagosome assembly / endoplasmic reticulum to Golgi vesicle-mediated transport / phospholipid metabolic process / protein transport / protein-folding chaperone binding / endoplasmic reticulum membrane ...EMC complex / protein insertion into ER membrane by stop-transfer membrane-anchor sequence / protein folding in endoplasmic reticulum / phospholipid transport / autophagosome assembly / endoplasmic reticulum to Golgi vesicle-mediated transport / phospholipid metabolic process / protein transport / protein-folding chaperone binding / endoplasmic reticulum membrane / endoplasmic reticulum / nucleus / membrane Similarity search - Function
Protein Sop4 / : / Suppressor of PMA 1-7 protein / TMEM85/ER membrane protein complex subunit 4 / ER membrane protein complex subunit 4 / ER membrane protein complex subunit 6 / ER membrane protein complex subunit 3 / ER membrane protein complex subunit 1, C-terminal / Membrane magnesium transporter / ER membrane protein complex subunit 1 ...Protein Sop4 / : / Suppressor of PMA 1-7 protein / TMEM85/ER membrane protein complex subunit 4 / ER membrane protein complex subunit 4 / ER membrane protein complex subunit 6 / ER membrane protein complex subunit 3 / ER membrane protein complex subunit 1, C-terminal / Membrane magnesium transporter / ER membrane protein complex subunit 1 / ER membrane protein complex subunit 6-like / EMC6 / ER membrane protein complex subunit 1, C-terminal / Membrane magnesium transporter / ER membrane protein complex subunit 10 / ER membrane protein complex subunit 2-like / Integral membrane protein EMC3/TMCO1-like / Integral membrane protein EMC3/TMCO1-like / Integral membrane protein DUF106 / TPR repeat profile. / Tetratricopeptide repeat / Tetratricopeptide-like helical domain superfamily Similarity search - Domain/homology
ER membrane protein complex subunit 1 / ER membrane protein complex subunit 3 / Protein SOP4 / ER membrane protein complex subunit 5 / ER membrane protein complex subunit 2 / ER membrane protein complex subunit 4 / Endoplasmic reticulum membrane protein complex subunit 10 / ER membrane protein complex subunit 6 Similarity search - Component
Biological species
Saccharomyces cerevisiae W303 (yeast)
Method
single particle reconstruction / cryo EM / Resolution: 3.0 Å
National Institutes of Health/National Cancer Institute (NIH/NCI)
R01-CA231466
United States
Citation
Journal: Nature / Year: 2020 Title: Structure of the ER membrane complex, a transmembrane-domain insertase. Authors: Lin Bai / Qinglong You / Xiang Feng / Amanda Kovach / Huilin Li / Abstract: The endoplasmic reticulum (ER) membrane complex (EMC) cooperates with the Sec61 translocon to co-translationally insert a transmembrane helix (TMH) of many multi-pass integral membrane proteins into ...The endoplasmic reticulum (ER) membrane complex (EMC) cooperates with the Sec61 translocon to co-translationally insert a transmembrane helix (TMH) of many multi-pass integral membrane proteins into the ER membrane, and it is also responsible for inserting the TMH of some tail-anchored proteins. How EMC accomplishes this feat has been unclear. Here we report the first, to our knowledge, cryo-electron microscopy structure of the eukaryotic EMC. We found that the Saccharomyces cerevisiae EMC contains eight subunits (Emc1-6, Emc7 and Emc10), has a large lumenal region and a smaller cytosolic region, and has a transmembrane region formed by Emc4, Emc5 and Emc6 plus the transmembrane domains of Emc1 and Emc3. We identified a five-TMH fold centred around Emc3 that resembles the prokaryotic YidC insertase and that delineates a largely hydrophilic client protein pocket. The transmembrane domain of Emc4 tilts away from the main transmembrane region of EMC and is partially mobile. Mutational studies demonstrated that the flexibility of Emc4 and the hydrophilicity of the client pocket are required for EMC function. The EMC structure reveals notable evolutionary conservation with the prokaryotic insertases, suggests that eukaryotic TMH insertion involves a similar mechanism, and provides a framework for detailed understanding of membrane insertion for numerous eukaryotic integral membrane proteins and tail-anchored proteins.
History
Deposition
Mar 26, 2020
-
Header (metadata) release
Jun 3, 2020
-
Map release
Jun 3, 2020
-
Update
Nov 13, 2024
-
Current status
Nov 13, 2024
Processing site: RCSB / Status: Released
-
Structure visualization
Movie
Surface view with section colored by density value
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi