- EMDB-19915: Cryo-EM structure of sodium pumping Rnf complex from Acetobacteri... -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-19915
タイトル
Cryo-EM structure of sodium pumping Rnf complex from Acetobacterium woodii bound to NADH
マップデータ
Cryo-EM structure of sodium pumping Rnf complex from Acetobacterium woodii bound to NADH
試料
複合体: rhodobacter nitrogen fixation complex from Acetobacterium woodii
タンパク質・ペプチド: x 6種
リガンド: x 5種
キーワード
Bioenergetics / anaerobic cryoEM / membrane protein / electron transport / redox-driven sodium pumping
機能・相同性
機能・相同性情報
ferredoxin-NAD+ oxidoreductase (Na+-transporting) / electron transport chain / transmembrane transport / FMN binding / 4 iron, 4 sulfur cluster binding / electron transfer activity / metal ion binding / plasma membrane 類似検索 - 分子機能
ジャーナル: Nat Commun / 年: 2025 タイトル: Molecular principles of redox-coupled sodium pumping of the ancient Rnf machinery. 著者: Anuj Kumar / Jennifer Roth / Hyunho Kim / Patricia Saura / Stefan Bohn / Tristan Reif-Trauttmansdorff / Anja Schubert / Ville R I Kaila / Jan M Schuller / Volker Müller / 要旨: The Rnf complex is the primary respiratory enzyme of several anaerobic prokaryotes that transfers electrons from ferredoxin to NAD and pumps ions (Na or H) across a membrane, powering ATP synthesis. ...The Rnf complex is the primary respiratory enzyme of several anaerobic prokaryotes that transfers electrons from ferredoxin to NAD and pumps ions (Na or H) across a membrane, powering ATP synthesis. Rnf is widespread in primordial organisms and the evolutionary predecessor of the Na-pumping NADH-quinone oxidoreductase (Nqr). By running in reverse, Rnf uses the electrochemical ion gradient to drive ferredoxin reduction with NADH, providing low potential electrons for nitrogenases and CO reductases. Yet, the molecular principles that couple the long-range electron transfer to Na translocation remain elusive. Here, we resolve key functional states along the electron transfer pathway in the Na-pumping Rnf complex from Acetobacterium woodii using redox-controlled cryo-electron microscopy that, in combination with biochemical functional assays and atomistic molecular simulations, provide key insight into the redox-driven Na pumping mechanism. We show that the reduction of the unique membrane-embedded [2Fe2S] cluster electrostatically attracts Na, and in turn, triggers an inward/outward transition with alternating membrane access driving the Na pump and the reduction of NAD. Our study unveils an ancient mechanism for redox-driven ion pumping, and provides key understanding of the fundamental principles governing energy conversion in biological systems.