- EMDB-17253: Structure of TRF1core in complex with telomeric nucleosome (4:1 c... -
+
Open data
ID or keywords:
Loading...
-
Basic information
Entry
Database: EMDB / ID: EMD-17253
Title
Structure of TRF1core in complex with telomeric nucleosome (4:1 complex)
Map data
Postprocess map of TRF1-TeloNCP 4:1 complex
Sample
Complex: TRF1core in complex with telomeric nucleosome
Complex: Human telomeric nucleosome
Protein or peptide: Human Histone H3
Protein or peptide: Human histone H4
Protein or peptide: Human Histone H2A
Protein or peptide: Human histone H2B
DNA: Telomeric DNA G strand
DNA: Telomeric DNA C strand
Complex: Human TRF1core complex
Protein or peptide: Human TRF1 protein
Keywords
Telomeric nucleosome / shelterin / telomere / DNA BINDING PROTEIN
Function / homology
Function and homology information
negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / Recognition and association of DNA glycosylase with site containing an affected pyrimidine ...negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / telomere organization / Inhibition of DNA recombination at telomere / Meiotic synapsis / Interleukin-7 signaling / RNA Polymerase I Promoter Opening / Assembly of the ORC complex at the origin of replication / Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex / innate immune response in mucosa / SUMOylation of chromatin organization proteins / DNA methylation / Condensation of Prophase Chromosomes / Chromatin modifications during the maternal to zygotic transition (MZT) / HCMV Late Events / SIRT1 negatively regulates rRNA expression / epigenetic regulation of gene expression / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / PRC2 methylates histones and DNA / Regulation of endogenous retroelements by KRAB-ZFP proteins / Defective pyroptosis / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / Nonhomologous End-Joining (NHEJ) / RNA Polymerase I Promoter Escape / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / G2/M DNA damage checkpoint / HDMs demethylate histones / NoRC negatively regulates rRNA expression / DNA Damage/Telomere Stress Induced Senescence / B-WICH complex positively regulates rRNA expression / PKMTs methylate histone lysines / Meiotic recombination / Pre-NOTCH Transcription and Translation / Metalloprotease DUBs / RMTs methylate histone arginines / Activation of anterior HOX genes in hindbrain development during early embryogenesis / Transcriptional regulation of granulopoiesis / HCMV Early Events / antimicrobial humoral immune response mediated by antimicrobial peptide / structural constituent of chromatin / antibacterial humoral response / UCH proteinases / nucleosome / heterochromatin formation / E3 ubiquitin ligases ubiquitinate target proteins / nucleosome assembly / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / chromatin organization / HATs acetylate histones / RUNX1 regulates transcription of genes involved in differentiation of HSCs / Factors involved in megakaryocyte development and platelet production / MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesis and hepatic steatosis / Processing of DNA double-strand break ends / Senescence-Associated Secretory Phenotype (SASP) / Oxidative Stress Induced Senescence / gene expression / Estrogen-dependent gene expression / chromosome, telomeric region / defense response to Gram-positive bacterium / Ub-specific processing proteases / cadherin binding / protein heterodimerization activity / Amyloid fiber formation / negative regulation of cell population proliferation / protein-containing complex / DNA binding / extracellular space / RNA binding / extracellular exosome / extracellular region / nucleoplasm / identical protein binding / nucleus / membrane / cytosol Similarity search - Function
United Kingdom, European Union, United States, 3 items
Organization
Grant number
Country
UK Research and Innovation (UKRI)
MC_UP_1201/19
United Kingdom
European Molecular Biology Organization (EMBO)
European Union
Jane Coffin Childs (JCC) Fund
United States
Citation
Journal: Sci Adv / Year: 2023 Title: Structural basis of telomeric nucleosome recognition by shelterin factor TRF1. Authors: Hongmiao Hu / Anne-Marie M van Roon / George E Ghanim / Bilal Ahsan / Abraham O Oluwole / Sew-Yeu Peak-Chew / Carol V Robinson / Thi Hoang Duong Nguyen / Abstract: Shelterin and nucleosomes are the key players that organize mammalian chromosome ends into the protective telomere caps. However, how they interact with each other at telomeres remains unknown. We ...Shelterin and nucleosomes are the key players that organize mammalian chromosome ends into the protective telomere caps. However, how they interact with each other at telomeres remains unknown. We report cryo-electron microscopy structures of a human telomeric nucleosome both unbound and bound to the shelterin factor TRF1. Our structures reveal that TRF1 binds unwrapped nucleosomal DNA ends by engaging both the nucleosomal DNA and the histone octamer. Unexpectedly, TRF1 binding shifts the register of the nucleosomal DNA by 1 bp. We discovered that phosphorylation of the TRF1 C terminus and a noncanomical DNA binding surface on TRF1 are critical for its association with telomeric nucleosomes. These insights into shelterin-chromatin interactions have crucial implications for understanding telomeric chromatin organization and other roles of shelterin at telomeres including replication and transcription.
Entire : TRF1core in complex with telomeric nucleosome
Entire
Name: TRF1core in complex with telomeric nucleosome
Components
Complex: TRF1core in complex with telomeric nucleosome
Complex: Human telomeric nucleosome
Protein or peptide: Human Histone H3
Protein or peptide: Human histone H4
Protein or peptide: Human Histone H2A
Protein or peptide: Human histone H2B
DNA: Telomeric DNA G strand
DNA: Telomeric DNA C strand
Complex: Human TRF1core complex
Protein or peptide: Human TRF1 protein
+
Supramolecule #1: TRF1core in complex with telomeric nucleosome
Supramolecule
Name: TRF1core in complex with telomeric nucleosome / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#7
+
Supramolecule #2: Human telomeric nucleosome
Supramolecule
Name: Human telomeric nucleosome / type: complex / ID: 2 / Parent: 1 / Macromolecule list: #1-#6 Details: Human telomeric nucleosome with 145 bp DNA and human histone octamer. 145 bp DNA consists of 23 copies of TTAGGG repeats. Histone octamer consists of 2 copies of H2A, H2B, H3 and H4
Details: 25 mM HEPES-KOH pH 8.0, 150 mM KCl, 1 mM MgCl2, 1% glycerol, 0.01% Igepal CA-630, 1 mM DTT
Grid
Model: C-flat-1.2/1.3 / Material: COPPER / Mesh: 300 / Support film - Material: CARBON / Support film - topology: HOLEY
Vitrification
Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277.15 K / Instrument: FEI VITROBOT MARK IV / Details: Blot Force: -15 Blot Time: 2.5 s.
-
Electron microscopy
Microscope
FEI TITAN KRIOS
Temperature
Min: 78.0 K
Specialist optics
Energy filter - Name: GIF Quantum LS / Energy filter - Slit width: 20 eV
Software
Name: EPU (ver. 2.13.0.3175REL)
Image recording
Film or detector model: GATAN K3 (6k x 4k) / Number grids imaged: 1 / Number real images: 24566 / Average exposure time: 2.25 sec. / Average electron dose: 56.0 e/Å2
Electron beam
Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi