Inactivation, recovery and regulation of the phototransduction cascade / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, LSU-rRNA,5S) / methionyl aminopeptidase / initiator methionyl aminopeptidase activity / regulation of amino acid metabolic process / negative regulation of glucose mediated signaling pathway / mTORC1-mediated signalling / Protein hydroxylation / ribosome-associated ubiquitin-dependent protein catabolic process / GDP-dissociation inhibitor activity ...Inactivation, recovery and regulation of the phototransduction cascade / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, LSU-rRNA,5S) / methionyl aminopeptidase / initiator methionyl aminopeptidase activity / regulation of amino acid metabolic process / negative regulation of glucose mediated signaling pathway / mTORC1-mediated signalling / Protein hydroxylation / ribosome-associated ubiquitin-dependent protein catabolic process / GDP-dissociation inhibitor activity / pre-mRNA 5'-splice site binding / Formation of the ternary complex, and subsequently, the 43S complex / Translation initiation complex formation / Ribosomal scanning and start codon recognition / nonfunctional rRNA decay / response to cycloheximide / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Major pathway of rRNA processing in the nucleolus and cytosol / mRNA destabilization / metalloaminopeptidase activity / SRP-dependent cotranslational protein targeting to membrane / GTP hydrolysis and joining of the 60S ribosomal subunit / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / negative regulation of translational frameshifting / Formation of a pool of free 40S subunits / negative regulation of mRNA splicing, via spliceosome / positive regulation of protein kinase activity / preribosome, large subunit precursor / L13a-mediated translational silencing of Ceruloplasmin expression / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ribosomal large subunit export from nucleus / translational elongation / G-protein alpha-subunit binding / 90S preribosome / ribosomal subunit export from nucleus / regulation of translational fidelity / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / protein-RNA complex assembly / maturation of LSU-rRNA / translation regulator activity / cytosolic ribosome / rescue of stalled ribosome / protein kinase C binding / cellular response to amino acid starvation / maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ribosomal large subunit biogenesis / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / positive regulation of apoptotic signaling pathway / maturation of SSU-rRNA / small-subunit processome / macroautophagy / translational initiation / maintenance of translational fidelity / protein processing / modification-dependent protein catabolic process / protein tag activity / cytoplasmic stress granule / rRNA processing / ribosome biogenesis / ribosome binding / ribosomal small subunit biogenesis / ribosomal small subunit assembly / small ribosomal subunit / 5S rRNA binding / small ribosomal subunit rRNA binding / ribosomal large subunit assembly / large ribosomal subunit rRNA binding / cytosolic small ribosomal subunit / cytosolic large ribosomal subunit / cytoplasmic translation / negative regulation of translation / rRNA binding / protein ubiquitination / structural constituent of ribosome / ribosome / translation / G protein-coupled receptor signaling pathway / ribonucleoprotein complex / negative regulation of gene expression / response to antibiotic / mRNA binding / ubiquitin protein ligase binding / nucleolus / mitochondrion / RNA binding / zinc ion binding / nucleoplasm / metal ion binding / nucleus / cytosol / cytoplasm 類似検索 - 分子機能
MYND-like zinc finger / zf-MYND-like zinc finger, mRNA-binding / Zinc finger C6H2-type profile. / Methionine aminopeptidase subfamily 1 signature. / Peptidase M24A, methionine aminopeptidase, subfamily 1 / Peptidase M24, methionine aminopeptidase / Peptidase M24 / Metallopeptidase family M24 / Creatinase/aminopeptidase-like / : ...MYND-like zinc finger / zf-MYND-like zinc finger, mRNA-binding / Zinc finger C6H2-type profile. / Methionine aminopeptidase subfamily 1 signature. / Peptidase M24A, methionine aminopeptidase, subfamily 1 / Peptidase M24, methionine aminopeptidase / Peptidase M24 / Metallopeptidase family M24 / Creatinase/aminopeptidase-like / : / : / Ribosomal protein S26e signature. / Ribosomal protein L41 / Ribosomal protein L41 / Ribosomal protein S21e, conserved site / Ribosomal protein S21e signature. / Ribosomal protein L1, conserved site / : / Ribosomal protein S12e signature. / Ribosomal protein S26e / Ribosomal protein S26e superfamily / Ribosomal protein S26e / Ribosomal protein L1 signature. / Ribosomal protein L1 / Ribosomal protein S12e / Ribosomal protein L29e / Ribosomal L29e protein family / Ribosomal protein L13e, conserved site / Ribosomal protein L13e signature. / Ribosomal protein S19e, conserved site / Ribosomal protein S19e signature. / Ribosomal protein S5, eukaryotic/archaeal / Small (40S) ribosomal subunit Asc1/RACK1 / Ribosomal protein S21e / Ribosomal protein S21e superfamily / Ribosomal protein S21e / Ribosomal protein S2, eukaryotic / Ribosomal protein L22e / Ribosomal protein L22e superfamily / Ribosomal L22e protein family / Ribosomal protein L27e, conserved site / S27a-like superfamily / Ribosomal protein L27e signature. / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal L38e protein family / Ribosomal protein L10e, conserved site / Ribosomal protein L10e signature. / : / 40S Ribosomal protein S10 / Ribosomal protein S7e signature. / Ribosomal protein L10e / Ribosomal protein L19, eukaryotic / Ribosomal protein L44e signature. / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Ribosomal protein L13e / Ribosomal protein L13e / Ribosomal protein L19/L19e conserved site / Ribosomal protein L19e signature. / Ribosomal protein L24e, conserved site / : / Ribosomal protein L24e signature. / Plectin/S10, N-terminal / Plectin/S10 domain / Ribosomal protein L6e signature. / 60S ribosomal protein L18a/ L20, eukaryotes / Ribosomal protein S8e subdomain, eukaryotes / Ribosomal protein S10, eukaryotic/archaeal / Ribosomal protein S3Ae, conserved site / Ribosomal protein S3Ae signature. / Ribosomal protein S25 / S25 ribosomal protein / Ribosomal protein S30 / Ribosomal protein S17e, conserved site / Ribosomal protein S30 / Ribosomal protein S17e signature. / Ribosomal protein S27a / Ribosomal protein S27a / Ribosomal protein S27a / Ribosomal protein L34e, conserved site / Ribosomal protein L34e signature. / : / Ribosomal protein S2, eukaryotic/archaeal / Ribosomal protein L5 eukaryotic, C-terminal / Ribosomal L18 C-terminal region / Ribosomal protein L44e / Ribosomal protein L44 / 50S ribosomal protein L18Ae/60S ribosomal protein L20 and L18a / Ribosomal protein L30e signature 1. / Ribosomal L40e family / Ribosomal protein L23/L25, N-terminal / Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A / Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A / Ribosomal protein L23, N-terminal domain / Ribosomal protein L18/L18-A/B/e, conserved site / Ribosomal protein L18e signature. / Ribosomal protein 60S L18 and 50S L18e / : / Ribosomal_L40e / Ribosomal protein L40e 類似検索 - ドメイン・相同性
Rps5p / RPS22A isoform 1 / RPL38 isoform 1 / RPL10 isoform 1 / RPS29A isoform 1 / RPS20 isoform 1 / RPS2 isoform 1 / 60S ribosomal protein L29 / RPL11B isoform 1 / 40S ribosomal protein S25 ...Rps5p / RPS22A isoform 1 / RPL38 isoform 1 / RPL10 isoform 1 / RPS29A isoform 1 / RPS20 isoform 1 / RPS2 isoform 1 / 60S ribosomal protein L29 / RPL11B isoform 1 / 40S ribosomal protein S25 / 40S ribosomal protein S26 / RPL5 isoform 1 / RPL32 isoform 1 / 40S ribosomal protein S3 / RPL4A isoform 1 / Large ribosomal subunit protein uL3 / RPS28A isoform 1 / 40S ribosomal protein S12 / RPL9A isoform 1 / 60S ribosomal protein L41 / Small ribosomal subunit protein uS2A / Small ribosomal subunit protein eS1A / Small ribosomal subunit protein uS4A / Large ribosomal subunit protein uL15 / Small ribosomal subunit protein eS17A / Large ribosomal subunit protein eL24A / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein eL39 / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein eL6B / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL33A / Large ribosomal subunit protein eL36A / Large ribosomal subunit protein eL15A / Large ribosomal subunit protein eL22A / Small ribosomal subunit protein uS15 / Ubiquitin-ribosomal protein eS31 fusion protein / Small ribosomal subunit protein eS19A / Small ribosomal subunit protein eS21A / Large ribosomal subunit protein eL27A / Large ribosomal subunit protein eL31A / Ubiquitin-ribosomal protein eL40A fusion protein / Large ribosomal subunit protein eL20A / Large ribosomal subunit protein eL43A / Large ribosomal subunit protein eL42A / Small ribosomal subunit protein uS12A / Small ribosomal subunit protein eS24A / Small ribosomal subunit protein eS30A / Small ribosomal subunit protein eS4A / Small ribosomal subunit protein eS6A / Small ribosomal subunit protein eS8B / Large ribosomal subunit protein uL14A / Large ribosomal subunit protein uL1A / Large ribosomal subunit protein uL2A / Small ribosomal subunit protein uS17A / Large ribosomal subunit protein eL18A / Small ribosomal subunit protein uS9A / Small ribosomal subunit protein uS13A / Large ribosomal subunit protein eL19A / Large ribosomal subunit protein uL29A / Large ribosomal subunit protein eL30 / Large ribosomal subunit protein eL8A / Large ribosomal subunit protein uL13A / Small ribosomal subunit protein eS7A / Small ribosomal subunit protein eS27A / Large ribosomal subunit protein eL14A / Small ribosomal subunit protein RACK1 / Small ribosomal subunit protein uS11B / Large ribosomal subunit protein eL37A / Large ribosomal subunit protein eL34A / Methionine aminopeptidase 1 / Small ribosomal subunit protein uS19 / Large ribosomal subunit protein eL21A / Small ribosomal subunit protein eS10A / Large ribosomal subunit protein eL13A 類似検索 - 構成要素
ジャーナル: PLoS Biol / 年: 2023 タイトル: The dynamic architecture of Map1- and NatB-ribosome complexes coordinates the sequential modifications of nascent polypeptide chains. 著者: Alexandra G Knorr / Timur Mackens-Kiani / Joanna Musial / Otto Berninghausen / Thomas Becker / Birgitta Beatrix / Roland Beckmann / 要旨: Cotranslational modification of the nascent polypeptide chain is one of the first events during the birth of a new protein. In eukaryotes, methionine aminopeptidases (MetAPs) cleave off the starter ...Cotranslational modification of the nascent polypeptide chain is one of the first events during the birth of a new protein. In eukaryotes, methionine aminopeptidases (MetAPs) cleave off the starter methionine, whereas N-acetyl-transferases (NATs) catalyze N-terminal acetylation. MetAPs and NATs compete with other cotranslationally acting chaperones, such as ribosome-associated complex (RAC), protein targeting and translocation factors (SRP and Sec61) for binding sites at the ribosomal tunnel exit. Yet, whereas well-resolved structures for ribosome-bound RAC, SRP and Sec61, are available, structural information on the mode of ribosome interaction of eukaryotic MetAPs or of the five cotranslationally active NATs is only available for NatA. Here, we present cryo-EM structures of yeast Map1 and NatB bound to ribosome-nascent chain complexes. Map1 is mainly associated with the dynamic rRNA expansion segment ES27a, thereby kept at an ideal position below the tunnel exit to act on the emerging substrate nascent chain. For NatB, we observe two copies of the NatB complex. NatB-1 binds directly below the tunnel exit, again involving ES27a, and NatB-2 is located below the second universal adapter site (eL31 and uL22). The binding mode of the two NatB complexes on the ribosome differs but overlaps with that of NatA and Map1, implying that NatB binds exclusively to the tunnel exit. We further observe that ES27a adopts distinct conformations when bound to NatA, NatB, or Map1, together suggesting a contribution to the coordination of a sequential activity of these factors on the emerging nascent chain at the ribosomal exit tunnel.