RNA polymerase I / human rDNA transcription / TRANSCRIPTION
機能・相同性
機能・相同性情報
RNA polymerase I transcription regulator complex / negative regulation of protein localization to nucleolus / nucleologenesis / neural crest formation / RNA Polymerase III Chain Elongation / RNA Polymerase III Transcription Termination / DNA/RNA hybrid binding / RNA polymerase I general transcription initiation factor binding / regulation of transcription by RNA polymerase I / RPAP3/R2TP/prefoldin-like complex ...RNA polymerase I transcription regulator complex / negative regulation of protein localization to nucleolus / nucleologenesis / neural crest formation / RNA Polymerase III Chain Elongation / RNA Polymerase III Transcription Termination / DNA/RNA hybrid binding / RNA polymerase I general transcription initiation factor binding / regulation of transcription by RNA polymerase I / RPAP3/R2TP/prefoldin-like complex / RNA Polymerase III Transcription Initiation From Type 1 Promoter / RNA Polymerase III Transcription Initiation From Type 2 Promoter / RNA Polymerase III Transcription Initiation From Type 3 Promoter / Cytosolic sensors of pathogen-associated DNA / RNA polymerase I preinitiation complex assembly / RNA Polymerase III Abortive And Retractive Initiation / nucleobase-containing compound metabolic process / Abortive elongation of HIV-1 transcript in the absence of Tat / RNA Polymerase I Transcription Termination / FGFR2 alternative splicing / MicroRNA (miRNA) biogenesis / Viral Messenger RNA Synthesis / Signaling by FGFR2 IIIa TM / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / HIV Transcription Initiation / RNA Polymerase II HIV Promoter Escape / Transcription of the HIV genome / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / mRNA Capping / termination of RNA polymerase I transcription / nucleolar large rRNA transcription by RNA polymerase I / mRNA Splicing - Minor Pathway / transcription initiation at RNA polymerase I promoter / PIWI-interacting RNA (piRNA) biogenesis / RNA Polymerase I Transcription Initiation / rRNA transcription / Processing of Capped Intron-Containing Pre-mRNA / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / RNA polymerase II transcribes snRNA genes / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / transcription by RNA polymerase III / Tat-mediated elongation of the HIV-1 transcript / Formation of HIV-1 elongation complex containing HIV-1 Tat / RNA polymerase I complex / transcription elongation by RNA polymerase I / RNA polymerase III complex / Formation of HIV elongation complex in the absence of HIV Tat / transcription by RNA polymerase I / RNA polymerase II, core complex / tRNA transcription by RNA polymerase III / RNA Polymerase II Transcription Elongation / Formation of RNA Pol II elongation complex / RNA Polymerase II Pre-transcription Events / embryo implantation / Inhibition of DNA recombination at telomere / mRNA Splicing - Major Pathway / cell surface receptor protein tyrosine kinase signaling pathway / TP53 Regulates Transcription of DNA Repair Genes / RNA Polymerase I Promoter Escape / Transcriptional regulation by small RNAs / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / Formation of TC-NER Pre-Incision Complex / protein-DNA complex / NoRC negatively regulates rRNA expression / B-WICH complex positively regulates rRNA expression / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / ribonucleoside binding / Activation of anterior HOX genes in hindbrain development during early embryogenesis / fibrillar center / DNA-directed RNA polymerase / DNA-directed RNA polymerase activity / single-stranded DNA binding / chromosome / Estrogen-dependent gene expression / nucleic acid binding / transcription by RNA polymerase II / protein dimerization activity / protein stabilization / chromatin binding / chromatin / nucleolus / magnesium ion binding / mitochondrion / DNA binding / RNA binding / zinc ion binding / nucleoplasm / nucleus / cytosol / cytoplasm 類似検索 - 分子機能
DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase I subunit RPA34 / DNA-directed RNA polymerase I subunit RPA1 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase I subunit RPA49 ...DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase I subunit RPA34 / DNA-directed RNA polymerase I subunit RPA1 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase I subunit RPA49 / DNA-directed RNA polymerase I subunit RPA2 / DNA-directed RNA polymerase I subunit RPA12 類似検索 - 構成要素
ジャーナル: Life Sci Alliance / 年: 2022 タイトル: The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. 著者: Julia L Daiß / Michael Pilsl / Kristina Straub / Andrea Bleckmann / Mona Höcherl / Florian B Heiss / Guillermo Abascal-Palacios / Ewan P Ramsay / Katarina Tlučková / Jean-Clement Mars / ...著者: Julia L Daiß / Michael Pilsl / Kristina Straub / Andrea Bleckmann / Mona Höcherl / Florian B Heiss / Guillermo Abascal-Palacios / Ewan P Ramsay / Katarina Tlučková / Jean-Clement Mars / Torben Fürtges / Astrid Bruckmann / Till Rudack / Carrie Bernecky / Valérie Lamour / Konstantin Panov / Alessandro Vannini / Tom Moss / Christoph Engel / 要旨: Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification ...Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This "dock II" domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor-binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain-containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.