- EMDB-11858: Recombinant human p53, tetrameric state -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-11858
タイトル
Recombinant human p53, tetrameric state
マップデータ
試料
細胞器官・細胞要素: NT*-p53
タンパク質・ペプチド: NT*-p53
機能・相同性
機能・相同性情報
Loss of function of TP53 in cancer due to loss of tetramerization ability / Regulation of TP53 Expression / negative regulation of helicase activity / signal transduction by p53 class mediator / negative regulation of G1 to G0 transition / negative regulation of glucose catabolic process to lactate via pyruvate / Transcriptional activation of cell cycle inhibitor p21 / regulation of intrinsic apoptotic signaling pathway by p53 class mediator / negative regulation of pentose-phosphate shunt / ATP-dependent DNA/DNA annealing activity ...Loss of function of TP53 in cancer due to loss of tetramerization ability / Regulation of TP53 Expression / negative regulation of helicase activity / signal transduction by p53 class mediator / negative regulation of G1 to G0 transition / negative regulation of glucose catabolic process to lactate via pyruvate / Transcriptional activation of cell cycle inhibitor p21 / regulation of intrinsic apoptotic signaling pathway by p53 class mediator / negative regulation of pentose-phosphate shunt / ATP-dependent DNA/DNA annealing activity / Activation of NOXA and translocation to mitochondria / regulation of cell cycle G2/M phase transition / regulation of fibroblast apoptotic process / intrinsic apoptotic signaling pathway in response to hypoxia / oligodendrocyte apoptotic process / negative regulation of miRNA processing / positive regulation of thymocyte apoptotic process / oxidative stress-induced premature senescence / regulation of tissue remodeling / glucose catabolic process to lactate via pyruvate / positive regulation of mitochondrial membrane permeability / positive regulation of programmed necrotic cell death / mRNA transcription / bone marrow development / circadian behavior / regulation of mitochondrial membrane permeability involved in apoptotic process / germ cell nucleus / RUNX3 regulates CDKN1A transcription / TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain / TP53 Regulates Transcription of Death Receptors and Ligands / Activation of PUMA and translocation to mitochondria / regulation of DNA damage response, signal transduction by p53 class mediator / histone deacetylase regulator activity / negative regulation of glial cell proliferation / Regulation of TP53 Activity through Association with Co-factors / negative regulation of neuroblast proliferation / T cell lineage commitment / mitochondrial DNA repair / Formation of Senescence-Associated Heterochromatin Foci (SAHF) / ER overload response / B cell lineage commitment / thymocyte apoptotic process / TP53 Regulates Transcription of Caspase Activators and Caspases / negative regulation of mitophagy / cardiac septum morphogenesis / negative regulation of DNA replication / entrainment of circadian clock by photoperiod / PI5P Regulates TP53 Acetylation / negative regulation of telomere maintenance via telomerase / Zygotic genome activation (ZGA) / positive regulation of release of cytochrome c from mitochondria / Association of TriC/CCT with target proteins during biosynthesis / necroptotic process / TP53 Regulates Transcription of Genes Involved in Cytochrome C Release / TFIID-class transcription factor complex binding / rRNA transcription / SUMOylation of transcription factors / TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain / intrinsic apoptotic signaling pathway by p53 class mediator / T cell proliferation involved in immune response / negative regulation of reactive oxygen species metabolic process / positive regulation of execution phase of apoptosis / Transcriptional Regulation by VENTX / replicative senescence / general transcription initiation factor binding / cellular response to UV-C / intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress / cellular response to actinomycin D / neuroblast proliferation / positive regulation of RNA polymerase II transcription preinitiation complex assembly / intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / response to X-ray / type II interferon-mediated signaling pathway / hematopoietic stem cell differentiation / Pyroptosis / chromosome organization / viral process / embryonic organ development / somitogenesis / TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest / glial cell proliferation / hematopoietic progenitor cell differentiation / core promoter sequence-specific DNA binding / negative regulation of stem cell proliferation / cellular response to glucose starvation / cis-regulatory region sequence-specific DNA binding / mitophagy / negative regulation of fibroblast proliferation / positive regulation of cardiac muscle cell apoptotic process / positive regulation of intrinsic apoptotic signaling pathway / tumor necrosis factor-mediated signaling pathway / negative regulation of proteolysis / Regulation of TP53 Activity through Acetylation / mitotic G1 DNA damage checkpoint signaling / gastrulation / 14-3-3 protein binding / response to salt stress / MDM2/MDM4 family protein binding / cardiac muscle cell apoptotic process / transcription repressor complex 類似検索 - 分子機能
ジャーナル: Structure / 年: 2022 タイトル: A "spindle and thread" mechanism unblocks p53 translation by modulating N-terminal disorder. 著者: Margit Kaldmäe / Thibault Vosselman / Xueying Zhong / Dilraj Lama / Gefei Chen / Mihkel Saluri / Nina Kronqvist / Jia Wei Siau / Aik Seng Ng / Farid J Ghadessy / Pierre Sabatier / Borivoj ...著者: Margit Kaldmäe / Thibault Vosselman / Xueying Zhong / Dilraj Lama / Gefei Chen / Mihkel Saluri / Nina Kronqvist / Jia Wei Siau / Aik Seng Ng / Farid J Ghadessy / Pierre Sabatier / Borivoj Vojtesek / Médoune Sarr / Cagla Sahin / Nicklas Österlund / Leopold L Ilag / Venla A Väänänen / Saikiran Sedimbi / Marie Arsenian-Henriksson / Roman A Zubarev / Lennart Nilsson / Philip J B Koeck / Anna Rising / Axel Abelein / Nicolas Fritz / Jan Johansson / David P Lane / Michael Landreh / 要旨: Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development ...Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of "life on the edge of solubility." Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT domain. We conclude that interactions with NT help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT. In summary, we demonstrate that inducing co-translational folding via a molecular "spindle and thread" mechanism unblocks protein translation in vitro.