登録情報 データベース : SASBDB / ID : SASDFE2 ダウンロードとリンク 試料wild-type human Latency Associated Peptide (LAP)Latency Associated Peptide (protein), LAP, Homo sapiens 詳細 機能・相同性 機能・相同性情報分子機能 ドメイン・相同性 構成要素
cellular response to acetaldehyde / adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains / positive regulation of microglia differentiation / regulation of interleukin-23 production / branch elongation involved in mammary gland duct branching / positive regulation of primary miRNA processing / Influenza Virus Induced Apoptosis / negative regulation of skeletal muscle tissue development / regulation of branching involved in mammary gland duct morphogenesis / macrophage derived foam cell differentiation ... cellular response to acetaldehyde / adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains / positive regulation of microglia differentiation / regulation of interleukin-23 production / branch elongation involved in mammary gland duct branching / positive regulation of primary miRNA processing / Influenza Virus Induced Apoptosis / negative regulation of skeletal muscle tissue development / regulation of branching involved in mammary gland duct morphogenesis / macrophage derived foam cell differentiation / frontal suture morphogenesis / regulation of enamel mineralization / regulation of cartilage development / TGFBR2 MSI Frameshift Mutants in Cancer / regulation of striated muscle tissue development / regulatory T cell differentiation / tolerance induction to self antigen / regulation of blood vessel remodeling / regulation of protein import into nucleus / embryonic liver development / extracellular matrix assembly / negative regulation of natural killer cell mediated cytotoxicity directed against tumor cell target / columnar/cuboidal epithelial cell maturation / negative regulation of hyaluronan biosynthetic process / type III transforming growth factor beta receptor binding / positive regulation of cardiac muscle cell differentiation / myofibroblast differentiation / odontoblast differentiation / positive regulation of odontogenesis / connective tissue replacement involved in inflammatory response wound healing / Langerhans cell differentiation / negative regulation of macrophage cytokine production / positive regulation of smooth muscle cell differentiation / TGFBR2 Kinase Domain Mutants in Cancer / positive regulation of exit from mitosis / positive regulation of isotype switching to IgA isotypes / positive regulation of mesenchymal stem cell proliferation / SMAD2/3 Phosphorylation Motif Mutants in Cancer / TGFBR1 KD Mutants in Cancer / membrane protein intracellular domain proteolysis / positive regulation of receptor signaling pathway via STAT / heart valve morphogenesis / retina vasculature development in camera-type eye / TGFBR3 regulates TGF-beta signaling / mammary gland branching involved in thelarche / bronchiole development / hyaluronan catabolic process / positive regulation of vasculature development / response to laminar fluid shear stress / lens fiber cell differentiation / positive regulation of extracellular matrix assembly / negative regulation of extracellular matrix disassembly / ATP biosynthetic process / positive regulation of branching involved in ureteric bud morphogenesis / receptor catabolic process / type II transforming growth factor beta receptor binding / TGFBR1 LBD Mutants in Cancer / oligodendrocyte development / type I transforming growth factor beta receptor binding / response to salt / germ cell migration / negative regulation of biomineral tissue development / positive regulation of mononuclear cell migration / endoderm development / phospholipid homeostasis / negative regulation of myoblast differentiation / positive regulation of chemotaxis / negative regulation of cell-cell adhesion mediated by cadherin / cell-cell junction organization / response to vitamin D / response to cholesterol / positive regulation of vascular permeability / negative regulation of interleukin-17 production / surfactant homeostasis / deubiquitinase activator activity / phosphate-containing compound metabolic process / negative regulation of release of sequestered calcium ion into cytosol / positive regulation of chemokine (C-X-C motif) ligand 2 production / digestive tract development / positive regulation of fibroblast migration / aortic valve morphogenesis / sprouting angiogenesis / negative regulation of ossification / face morphogenesis / RUNX3 regulates CDKN1A transcription / neural tube development / positive regulation of regulatory T cell differentiation / ureteric bud development / Molecules associated with elastic fibres / positive regulation of epidermal growth factor receptor signaling pathway / negative regulation of phagocytosis / positive regulation of peptidyl-tyrosine phosphorylation / negative regulation of neuroblast proliferation / muscle cell cellular homeostasis / cellular response to insulin-like growth factor stimulus / Syndecan interactions / ventricular cardiac muscle tissue morphogenesis / lung alveolus development / negative regulation of fat cell differentiation / positive regulation of interleukin-17 production 類似検索 - 分子機能 Transforming growth factor beta-1 proprotein / Transforming growth factor-beta / TGF-beta, propeptide / TGF-beta propeptide / Transforming growth factor beta, conserved site / TGF-beta family signature. / Transforming growth factor-beta-related / Transforming growth factor-beta (TGF-beta) family / Transforming growth factor-beta, C-terminal / Transforming growth factor beta like domain ... Transforming growth factor beta-1 proprotein / Transforming growth factor-beta / TGF-beta, propeptide / TGF-beta propeptide / Transforming growth factor beta, conserved site / TGF-beta family signature. / Transforming growth factor-beta-related / Transforming growth factor-beta (TGF-beta) family / Transforming growth factor-beta, C-terminal / Transforming growth factor beta like domain / TGF-beta family profile. / Cystine-knot cytokine 類似検索 - ドメイン・相同性 Transforming growth factor beta-1 proprotein 類似検索 - 構成要素生物種 Homo sapiens (ヒト) 引用日付 : 2019 Jul 1タイトル : Structural consequences of transforming growth factor beta-1 activation from near-therapeutic X-ray doses著者 : Stachowski T / Grant T 登録者Tim Stachowski (Hauptman-Woodward Medical Research Institute, New York, USA)