[English] 日本語
Yorodumi
- PDB-8u02: Unknown entry -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8u02
TitleCryoEM structure of D2 dopamine receptor in complex with GoA KE mutant and dopamine
Components
  • D(2) dopamine receptor
  • Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2
  • Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1
  • Guanine nucleotide-binding protein G(o) subunit alpha
KeywordsMEMBRANE PROTEIN / GPCR / Dopamine / DRD2 / Dominant Negative
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / Resolution: 3.28 Å
AuthorsKrumm, B.E. / Kapolka, N.J. / Fay, J.F. / Roth, B.L.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of Mental Health (NIH/NIMH)MH112205 United States
CitationJournal: Nat Commun / Year: 2024
Title: A neurodevelopmental disorder mutation locks G proteins in the transitory pre-activated state.
Authors: Kevin M Knight / Brian E Krumm / Nicholas J Kapolka / W Grant Ludlam / Meng Cui / Sepehr Mani / Iya Prytkova / Elizabeth G Obarow / Tyler J Lefevre / Wenyuan Wei / Ning Ma / Xi-Ping Huang / ...Authors: Kevin M Knight / Brian E Krumm / Nicholas J Kapolka / W Grant Ludlam / Meng Cui / Sepehr Mani / Iya Prytkova / Elizabeth G Obarow / Tyler J Lefevre / Wenyuan Wei / Ning Ma / Xi-Ping Huang / Jonathan F Fay / Nagarajan Vaidehi / Alan V Smrcka / Paul A Slesinger / Diomedes E Logothetis / Kirill A Martemyanov / Bryan L Roth / Henrik G Dohlman /
Abstract: Many neurotransmitter receptors activate G proteins through exchange of GDP for GTP. The intermediate nucleotide-free state has eluded characterization, due largely to its inherent instability. Here ...Many neurotransmitter receptors activate G proteins through exchange of GDP for GTP. The intermediate nucleotide-free state has eluded characterization, due largely to its inherent instability. Here we characterize a G protein variant associated with a rare neurological disorder in humans. Gα has a charge reversal that clashes with the phosphate groups of GDP and GTP. As anticipated, the purified protein binds poorly to guanine nucleotides yet retains wild-type affinity for G protein βγ subunits. In cells with physiological concentrations of nucleotide, Gα forms a stable complex with receptors and Gβγ, impeding effector activation. Further, we demonstrate that the mutant can be easily purified in complex with dopamine-bound D2 receptors, and use cryo-electron microscopy to determine the structure, including both domains of Gα, without nucleotide or stabilizing nanobodies. These findings reveal the molecular basis for the first committed step of G protein activation, establish a mechanistic basis for a neurological disorder, provide a simplified strategy to determine receptor-G protein structures, and a method to detect high affinity agonist binding in cells.
History
DepositionAug 28, 2023Deposition site: RCSB / Processing site: RCSB
Revision 1.0Aug 21, 2024Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
R: D(2) dopamine receptor
B: Guanine nucleotide-binding protein G(o) subunit alpha
A: Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1
C: Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2
hetero molecules


Theoretical massNumber of molelcules
Total (without water)138,2185
Polymers138,0654
Non-polymers1531
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein D(2) dopamine receptor


Mass: 50685.355 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: DRD2 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P14416
#2: Protein Guanine nucleotide-binding protein G(o) subunit alpha


Mass: 40100.434 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GNAO1 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P09471
#3: Protein Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 / Transducin beta chain 1


Mass: 39418.086 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GNB1 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P62873
#4: Protein Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 / G gamma-I


Mass: 7861.143 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GNG2 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P59768
#5: Chemical ChemComp-LDP / L-DOPAMINE / DOPAMINE


Mass: 153.178 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C8H11NO2 / Feature type: SUBJECT OF INVESTIGATION / Comment: medication*YM
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Human DRD2 in complex with heterotrimeric G protein GoA (K46E) and dopamine
Type: COMPLEX / Entity ID: #1-#4 / Source: RECOMBINANT
Molecular weightValue: 0.12 MDa / Experimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Spodoptera frugiperda (fall armyworm)
Buffer solutionpH: 7.5
SpecimenConc.: 3.5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE-PROPANE

-
Electron microscopy imaging

Experimental equipment
Model: Talos Arctica / Image courtesy: FEI Company
MicroscopyModel: FEI TALOS ARCTICA
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 1500 nm / Nominal defocus min: 700 nm
Image recordingElectron dose: 55 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.28 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 153270 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0048150
ELECTRON MICROSCOPYf_angle_d0.88211041
ELECTRON MICROSCOPYf_dihedral_angle_d9.5432958
ELECTRON MICROSCOPYf_chiral_restr0.0491276
ELECTRON MICROSCOPYf_plane_restr0.0141397

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlc1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more