[English] 日本語
Yorodumi
- PDB-8tan: CryoEM structure of MFRV-VILP bound to IGF1Rzip -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8tan
TitleCryoEM structure of MFRV-VILP bound to IGF1Rzip
Components
  • Insulin-like growth factor
  • Insulin-like growth factor 1 receptor
KeywordsSIGNALING PROTEIN / IGF1R / MFRV-VILP / VILP
Function / homology
Function and homology information


cardiac atrium development / negative regulation of cholangiocyte apoptotic process / insulin-like growth factor receptor activity / positive regulation of steroid hormone biosynthetic process / protein kinase complex / Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) / protein transporter activity / IRS-related events triggered by IGF1R / insulin-like growth factor binding / negative regulation of muscle cell apoptotic process ...cardiac atrium development / negative regulation of cholangiocyte apoptotic process / insulin-like growth factor receptor activity / positive regulation of steroid hormone biosynthetic process / protein kinase complex / Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) / protein transporter activity / IRS-related events triggered by IGF1R / insulin-like growth factor binding / negative regulation of muscle cell apoptotic process / cellular response to progesterone stimulus / positive regulation of DNA metabolic process / cellular response to zinc ion starvation / cellular response to aldosterone / insulin receptor complex / cellular response to testosterone stimulus / negative regulation of hepatocyte apoptotic process / insulin-like growth factor I binding / insulin receptor activity / transcytosis / alphav-beta3 integrin-IGF-1-IGF1R complex / response to alkaloid / Respiratory syncytial virus (RSV) attachment and entry / positive regulation of protein-containing complex disassembly / cellular response to angiotensin / dendritic spine maintenance / cellular response to insulin-like growth factor stimulus / response to L-glutamate / insulin binding / negative regulation of MAPK cascade / establishment of cell polarity / positive regulation of axon regeneration / amyloid-beta clearance / positive regulation of osteoblast proliferation / positive regulation of cytokinesis / regulation of JNK cascade / insulin receptor substrate binding / estrous cycle / G-protein alpha-subunit binding / response to vitamin E / SHC-related events triggered by IGF1R / phosphatidylinositol 3-kinase binding / peptidyl-tyrosine autophosphorylation / cellular response to transforming growth factor beta stimulus / T-tubule / cerebellum development / cellular response to dexamethasone stimulus / axonogenesis / phosphatidylinositol 3-kinase/protein kinase B signal transduction / insulin-like growth factor receptor signaling pathway / caveola / cellular response to estradiol stimulus / hippocampus development / cellular response to glucose stimulus / positive regulation of smooth muscle cell proliferation / response to nicotine / insulin receptor binding / hormone activity / receptor protein-tyrosine kinase / cellular response to mechanical stimulus / cellular response to amyloid-beta / cellular senescence / insulin receptor signaling pathway / positive regulation of cold-induced thermogenesis / protein tyrosine kinase activity / response to ethanol / positive regulation of MAPK cascade / protein autophosphorylation / Extra-nuclear estrogen signaling / positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transduction / receptor complex / positive regulation of cell migration / immune response / axon / intracellular membrane-bounded organelle / neuronal cell body / positive regulation of cell population proliferation / protein-containing complex binding / negative regulation of apoptotic process / signal transduction / extracellular region / ATP binding / membrane / identical protein binding / plasma membrane
Similarity search - Function
Tyrosine-protein kinase, insulin-like receptor / Tyrosine-protein kinase, receptor class II, conserved site / Receptor tyrosine kinase class II signature. / Insulin-like / Insulin / insulin-like growth factor / relaxin family. / Insulin-like superfamily / Receptor L-domain / Furin-like cysteine-rich domain / Receptor L-domain superfamily / Furin-like cysteine rich region ...Tyrosine-protein kinase, insulin-like receptor / Tyrosine-protein kinase, receptor class II, conserved site / Receptor tyrosine kinase class II signature. / Insulin-like / Insulin / insulin-like growth factor / relaxin family. / Insulin-like superfamily / Receptor L-domain / Furin-like cysteine-rich domain / Receptor L-domain superfamily / Furin-like cysteine rich region / Receptor L domain / Furin-like repeat / Furin-like repeats / Growth factor receptor cysteine-rich domain superfamily / Fibronectin type III domain / Fibronectin type 3 domain / Fibronectin type-III domain profile. / Fibronectin type III / Fibronectin type III superfamily / Tyrosine-protein kinase, catalytic domain / Tyrosine kinase, catalytic domain / Tyrosine protein kinases specific active-site signature. / Tyrosine-protein kinase, active site / Protein tyrosine and serine/threonine kinase / Serine-threonine/tyrosine-protein kinase, catalytic domain / Protein kinase, ATP binding site / Protein kinases ATP-binding region signature. / Immunoglobulin-like fold / Protein kinase domain profile. / Protein kinase domain / Protein kinase-like domain superfamily
Similarity search - Domain/homology
Insulin-like growth factor / Insulin-like growth factor 1 receptor
Similarity search - Component
Biological speciesHomo sapiens (human)
Mandarin fish ranavirus
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.05 Å
AuthorsKirk, N.S.
Funding support Czech Republic, 2items
OrganizationGrant numberCountry
Other governmentLX22NPO5104
Czech Academy of Sciences6138963 Czech Republic
CitationJournal: Mol Metab / Year: 2024
Title: A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression.
Authors: Martina Chrudinová / Nicholas S Kirk / Aurelien Chuard / Hari Venugopal / Fa Zhang / Marta Lubos / Vasily Gelfanov / Terezie Páníková / Lenka Žáková / Julianne Cutone / Matthew ...Authors: Martina Chrudinová / Nicholas S Kirk / Aurelien Chuard / Hari Venugopal / Fa Zhang / Marta Lubos / Vasily Gelfanov / Terezie Páníková / Lenka Žáková / Julianne Cutone / Matthew Mojares / Richard DiMarchi / Jiří Jiráček / Emrah Altindis /
Abstract: OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) ...OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time.
METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor ...METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain.
RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with ...RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure.
CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high ...CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.
History
DepositionJun 27, 2023Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jan 17, 2024Provider: repository / Type: Initial release
Revision 1.1Jan 31, 2024Group: Database references / Category: citation / Item: _citation.journal_volume

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Insulin-like growth factor 1 receptor
B: Insulin-like growth factor 1 receptor
C: Insulin-like growth factor
hetero molecules


Theoretical massNumber of molelcules
Total (without water)228,54217
Polymers224,6733
Non-polymers3,86914
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

#1: Protein Insulin-like growth factor 1 receptor / Insulin-like growth factor I receptor / IGF-I receptor


Mass: 108937.242 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: IGF1R / Production host: Cricetulus griseus (Chinese hamster)
References: UniProt: P08069, receptor protein-tyrosine kinase
#2: Protein Insulin-like growth factor


Mass: 6799.011 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Mandarin fish ranavirus / References: UniProt: A0A3G5APE9
#3: Polysaccharide beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta- ...beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 586.542 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/2,3,2/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5]/1-1-2/a4-b1_b4-c1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-Manp]{}}}LINUCSPDB-CARE
#4: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 424.401 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/1,2,1/[a2122h-1b_1-5_2*NCC/3=O]/1-1/a4-b1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}}LINUCSPDB-CARE
#5: Sugar
ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 11 / Source method: obtained synthetically / Formula: C8H15NO6
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0
Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeEntity IDParent-IDSourceDetails
11:2 complex of MFRV-VILP bound to IGF1RzipCOMPLEX#1-#20MULTIPLE SOURCES
2MFRV-VILPCOMPLEX#21SYNTHETIC
3IGF1RzipCOMPLEX#11RECOMBINANTIGF1R ectodomain with C-terminal leucine zipper domain
Molecular weight
IDEntity assembly-IDExperimental value
12NO
23NO
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
12Mandarin fish ranavirus2487147
23Homo sapiens (human)9606
Source (recombinant)Organism: Cricetulus griseus (Chinese hamster)
Buffer solutionpH: 8
SpecimenConc.: 1.2 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 130000 X / Nominal defocus max: 17000 nm / Nominal defocus min: 4000 nm / Cs: 2.7 mm / C2 aperture diameter: 50 µm
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 5.36 sec. / Electron dose: 60 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) / Num. of grids imaged: 1 / Num. of real images: 7833

-
Processing

EM software
IDNameVersionCategory
1crYOLO1.8.0gpuparticle selection
4cryoSPARC4CTF correction
13cryoSPARC3D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 8500000
3D reconstructionResolution: 3.05 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 201000 / Num. of class averages: 1 / Symmetry type: POINT
RefinementCross valid method: NONE
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
Displacement parametersBiso mean: 126.18 Å2
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00314173
ELECTRON MICROSCOPYf_angle_d0.71119215
ELECTRON MICROSCOPYf_dihedral_angle_d13.0655320
ELECTRON MICROSCOPYf_chiral_restr0.0512118
ELECTRON MICROSCOPYf_plane_restr0.0052477

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more