National Institutes of Health/National Institute on Aging (NIH/NIA)
5U19AG065156-02
米国
Other private
引用
ジャーナル: Nat Chem Biol / 年: 2024 タイトル: De novo design of proteins housing excitonically coupled chlorophyll special pairs. 著者: Nathan M Ennist / Shunzhi Wang / Madison A Kennedy / Mariano Curti / George A Sutherland / Cvetelin Vasilev / Rachel L Redler / Valentin Maffeis / Saeed Shareef / Anthony V Sica / Ash Sueh ...著者: Nathan M Ennist / Shunzhi Wang / Madison A Kennedy / Mariano Curti / George A Sutherland / Cvetelin Vasilev / Rachel L Redler / Valentin Maffeis / Saeed Shareef / Anthony V Sica / Ash Sueh Hua / Arundhati P Deshmukh / Adam P Moyer / Derrick R Hicks / Avi Z Swartz / Ralph A Cacho / Nathan Novy / Asim K Bera / Alex Kang / Banumathi Sankaran / Matthew P Johnson / Amala Phadkule / Mike Reppert / Damian Ekiert / Gira Bhabha / Lance Stewart / Justin R Caram / Barry L Stoddard / Elisabet Romero / C Neil Hunter / David Baker / 要旨: Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer ...Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.
0: C3-comp_O32-15, polyalanine model 1: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model 3: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model 5: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model 7: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model 9: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model B: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model BA: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model BB: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model BC: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model BD: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model BE: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model BF: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model D: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model F: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model H: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model J: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model L: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model N: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model P: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model R: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model T: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model V: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model X: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model Z: C2-chlorophyll-comp_O32-15_ctermHis, polyalanine model 2: C3-comp_O32-15, polyalanine model 4: C3-comp_O32-15, polyalanine model 6: C3-comp_O32-15, polyalanine model 8: C3-comp_O32-15, polyalanine model A: C3-comp_O32-15, polyalanine model AB: C3-comp_O32-15, polyalanine model AC: C3-comp_O32-15, polyalanine model AE: C3-comp_O32-15, polyalanine model AF: C3-comp_O32-15, polyalanine model AG: C3-comp_O32-15, polyalanine model AH: C3-comp_O32-15, polyalanine model C: C3-comp_O32-15, polyalanine model E: C3-comp_O32-15, polyalanine model G: C3-comp_O32-15, polyalanine model I: C3-comp_O32-15, polyalanine model K: C3-comp_O32-15, polyalanine model M: C3-comp_O32-15, polyalanine model O: C3-comp_O32-15, polyalanine model Q: C3-comp_O32-15, polyalanine model S: C3-comp_O32-15, polyalanine model U: C3-comp_O32-15, polyalanine model W: C3-comp_O32-15, polyalanine model Y: C3-comp_O32-15, polyalanine model