+Open data
-Basic information
Entry | Database: PDB / ID: 7yq3 | ||||||
---|---|---|---|---|---|---|---|
Title | human insulin receptor bound with A43 DNA aptamer and insulin | ||||||
Components |
| ||||||
Keywords | STRUCTURAL PROTEIN / receptor-ligand complex | ||||||
Function / homology | Function and homology information regulation of female gonad development / positive regulation of meiotic cell cycle / insulin-like growth factor II binding / positive regulation of developmental growth / male sex determination / exocrine pancreas development / insulin receptor complex / insulin-like growth factor I binding / insulin receptor activity / positive regulation of protein-containing complex disassembly ...regulation of female gonad development / positive regulation of meiotic cell cycle / insulin-like growth factor II binding / positive regulation of developmental growth / male sex determination / exocrine pancreas development / insulin receptor complex / insulin-like growth factor I binding / insulin receptor activity / positive regulation of protein-containing complex disassembly / cargo receptor activity / dendritic spine maintenance / insulin binding / negative regulation of NAD(P)H oxidase activity / negative regulation of glycogen catabolic process / PTB domain binding / adrenal gland development / positive regulation of nitric oxide mediated signal transduction / negative regulation of fatty acid metabolic process / activation of protein kinase activity / negative regulation of feeding behavior / Signaling by Insulin receptor / IRS activation / Insulin processing / neuronal cell body membrane / regulation of protein secretion / positive regulation of peptide hormone secretion / positive regulation of respiratory burst / positive regulation of receptor internalization / negative regulation of acute inflammatory response / Regulation of gene expression in beta cells / alpha-beta T cell activation / amyloid-beta clearance / regulation of amino acid metabolic process / regulation of embryonic development / negative regulation of respiratory burst involved in inflammatory response / insulin receptor substrate binding / negative regulation of protein secretion / positive regulation of dendritic spine maintenance / transport across blood-brain barrier / positive regulation of glycogen biosynthetic process / Synthesis, secretion, and deacylation of Ghrelin / epidermis development / regulation of protein localization to plasma membrane / fatty acid homeostasis / negative regulation of lipid catabolic process / negative regulation of gluconeogenesis / Signal attenuation / FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes / COPI-mediated anterograde transport / phosphatidylinositol 3-kinase binding / positive regulation of lipid biosynthetic process / heart morphogenesis / negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway / positive regulation of insulin receptor signaling pathway / nitric oxide-cGMP-mediated signaling / negative regulation of reactive oxygen species biosynthetic process / positive regulation of protein autophosphorylation / transport vesicle / Insulin receptor recycling / insulin-like growth factor receptor binding / dendrite membrane / neuron projection maintenance / endoplasmic reticulum-Golgi intermediate compartment membrane / positive regulation of brown fat cell differentiation / positive regulation of protein metabolic process / NPAS4 regulates expression of target genes / activation of protein kinase B activity / positive regulation of glycolytic process / positive regulation of mitotic nuclear division / Insulin receptor signalling cascade / receptor-mediated endocytosis / positive regulation of nitric-oxide synthase activity / learning / positive regulation of cytokine production / positive regulation of long-term synaptic potentiation / acute-phase response / endosome lumen / Regulation of insulin secretion / positive regulation of D-glucose import / positive regulation of protein secretion / negative regulation of proteolysis / positive regulation of cell differentiation / regulation of transmembrane transporter activity / insulin receptor binding / positive regulation of MAP kinase activity / wound healing / receptor protein-tyrosine kinase / caveola / regulation of synaptic plasticity / negative regulation of protein catabolic process / cellular response to growth factor stimulus / hormone activity / receptor internalization / memory / positive regulation of neuron projection development / peptidyl-tyrosine phosphorylation / cellular response to insulin stimulus / cognition / positive regulation of protein localization to nucleus Similarity search - Function | ||||||
Biological species | Homo sapiens (human) synthetic construct (others) | ||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.6 Å | ||||||
Authors | Kim, J. / Yunn, N. / Ryu, S. / Cho, Y. | ||||||
Funding support | Korea, Republic Of, 1items
| ||||||
Citation | Journal: Nat Commun / Year: 2022 Title: Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures. Authors: Junhong Kim / Na-Oh Yunn / Mangeun Park / Jihan Kim / Seongeun Park / Yoojoong Kim / Jeongeun Noh / Sung Ho Ryu / Yunje Cho / Abstract: Activation of insulin receptor (IR) initiates a cascade of conformational changes and autophosphorylation events. Herein, we determined three structures of IR trapped by aptamers using cryo-electron ...Activation of insulin receptor (IR) initiates a cascade of conformational changes and autophosphorylation events. Herein, we determined three structures of IR trapped by aptamers using cryo-electron microscopy. The A62 agonist aptamer selectively activates metabolic signaling. In the absence of insulin, the two A62 aptamer agonists of IR adopt an insulin-accessible arrowhead conformation by mimicking site-1/site-2' insulin coordination. Insulin binding at one site triggers conformational changes in one protomer, but this movement is blocked in the other protomer by A62 at the opposite site. A62 binding captures two unique conformations of IR with a similar stalk arrangement, which underlie Tyr1150 mono-phosphorylation (m-pY1150) and selective activation for metabolic signaling. The A43 aptamer, a positive allosteric modulator, binds at the opposite side of the insulin-binding module, and stabilizes the single insulin-bound IR structure that brings two FnIII-3 regions into closer proximity for full activation. Our results suggest that spatial proximity of the two FnIII-3 ends is important for m-pY1150, but multi-phosphorylation of IR requires additional conformational rearrangement of intracellular domains mediated by coordination between extracellular and transmembrane domains. | ||||||
History |
|
-Structure visualization
Structure viewer | Molecule: MolmilJmol/JSmol |
---|
-Downloads & links
-Download
PDBx/mmCIF format | 7yq3.cif.gz | 327.8 KB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb7yq3.ent.gz | 264.4 KB | Display | PDB format |
PDBx/mmJSON format | 7yq3.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 7yq3_validation.pdf.gz | 1.4 MB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 7yq3_full_validation.pdf.gz | 1.5 MB | Display | |
Data in XML | 7yq3_validation.xml.gz | 61 KB | Display | |
Data in CIF | 7yq3_validation.cif.gz | 89.2 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/yq/7yq3 ftp://data.pdbj.org/pub/pdb/validation_reports/yq/7yq3 | HTTPS FTP |
-Related structure data
Related structure data | 34018MC 7yq4C 7yq5C 7yq6C 8guyC M: map data used to model this data C: citing same article (ref.) |
---|---|
Similar structure data | Similarity search - Function & homologyF&H Search |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
#1: Protein/peptide | Mass: 2383.698 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: INS / Cell line (production host): HEK293F / Production host: Homo sapiens (human) / References: UniProt: P01308 | ||||
---|---|---|---|---|---|
#2: Protein/peptide | Mass: 2860.250 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: INS-IGF2 / Cell line (production host): HEK293F / Production host: Homo sapiens (human) / References: UniProt: F8WCM5 | ||||
#3: Protein | Mass: 103623.578 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: INSR / Cell line (production host): HEK293F / Production host: Homo sapiens (human) References: UniProt: P06213, receptor protein-tyrosine kinase #4: DNA chain | | Mass: 9596.608 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others) Has ligand of interest | Y | |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component |
| ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source (natural) | Organism: Homo sapiens (human) | ||||||||||||||||||||||||
Source (recombinant) | Organism: Homo sapiens (human) | ||||||||||||||||||||||||
Buffer solution | pH: 7.5 | ||||||||||||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||||||
Vitrification | Cryogen name: ETHANE |
-Electron microscopy imaging
Experimental equipment | Model: Talos Arctica / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TALOS ARCTICA |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: OTHER |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 3000 nm / Nominal defocus min: 1500 nm |
Image recording | Electron dose: 50 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-Processing
Software | Name: PHENIX / Version: 1.14_3260: / Classification: refinement |
---|---|
CTF correction | Type: NONE |
3D reconstruction | Resolution: 3.6 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 156334 / Symmetry type: POINT |