[English] 日本語
Yorodumi
- PDB-7rzf: Insulin Degrading Enzyme O/pC -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7rzf
TitleInsulin Degrading Enzyme O/pC
Components
  • Cysteine-free Insulin-degrading enzyme
  • Insulin A chain
  • Insulin B chain
KeywordsHYDROLASE / M16A zinc metalloprotease
Function / homology
Function and homology information


insulysin / ubiquitin recycling / insulin catabolic process / insulin metabolic process / amyloid-beta clearance by cellular catabolic process / hormone catabolic process / bradykinin catabolic process / insulin binding / negative regulation of NAD(P)H oxidase activity / negative regulation of glycogen catabolic process ...insulysin / ubiquitin recycling / insulin catabolic process / insulin metabolic process / amyloid-beta clearance by cellular catabolic process / hormone catabolic process / bradykinin catabolic process / insulin binding / negative regulation of NAD(P)H oxidase activity / negative regulation of glycogen catabolic process / positive regulation of nitric oxide mediated signal transduction / negative regulation of fatty acid metabolic process / regulation of aerobic respiration / negative regulation of feeding behavior / peptide catabolic process / Signaling by Insulin receptor / IRS activation / Insulin processing / regulation of protein secretion / positive regulation of peptide hormone secretion / positive regulation of respiratory burst / negative regulation of acute inflammatory response / Regulation of gene expression in beta cells / alpha-beta T cell activation / amyloid-beta clearance / regulation of amino acid metabolic process / peroxisomal matrix / negative regulation of respiratory burst involved in inflammatory response / positive regulation of dendritic spine maintenance / positive regulation of glycogen biosynthetic process / Synthesis, secretion, and deacylation of Ghrelin / negative regulation of protein secretion / regulation of protein localization to plasma membrane / amyloid-beta metabolic process / fatty acid homeostasis / negative regulation of lipid catabolic process / negative regulation of gluconeogenesis / Signal attenuation / FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes / COPI-mediated anterograde transport / positive regulation of lipid biosynthetic process / negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway / positive regulation of insulin receptor signaling pathway / nitric oxide-cGMP-mediated signaling / negative regulation of reactive oxygen species biosynthetic process / transport vesicle / positive regulation of protein autophosphorylation / Insulin receptor recycling / insulin-like growth factor receptor binding / neuron projection maintenance / positive regulation of protein metabolic process / NPAS4 regulates expression of target genes / positive regulation of brown fat cell differentiation / activation of protein kinase B activity / endoplasmic reticulum-Golgi intermediate compartment membrane / positive regulation of glycolytic process / positive regulation of mitotic nuclear division / Insulin receptor signalling cascade / positive regulation of nitric-oxide synthase activity / proteolysis involved in protein catabolic process / positive regulation of cytokine production / positive regulation of long-term synaptic potentiation / acute-phase response / endosome lumen / positive regulation of D-glucose import / Regulation of insulin secretion / negative regulation of proteolysis / positive regulation of protein secretion / positive regulation of cell differentiation / Peroxisomal protein import / regulation of transmembrane transporter activity / insulin receptor binding / peptide binding / wound healing / protein catabolic process / negative regulation of protein catabolic process / regulation of synaptic plasticity / hormone activity / antigen processing and presentation of endogenous peptide antigen via MHC class I / metalloendopeptidase activity / positive regulation of neuron projection development / cognition / positive regulation of protein localization to nucleus / Golgi lumen / vasodilation / positive regulation of protein catabolic process / glucose metabolic process / peroxisome / positive regulation of protein binding / insulin receptor signaling pathway / cell-cell signaling / glucose homeostasis / regulation of protein localization / positive regulation of NF-kappaB transcription factor activity / virus receptor activity / PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling / positive regulation of cell growth / basolateral plasma membrane / protease binding / secretory granule lumen
Similarity search - Function
Peptidase M16, middle/third domain / Middle or third domain of peptidase_M16 / PQQ synthase PqqF-like, C-terminal lobe domain 4 / : / Peptidase M16, zinc-binding site / Insulinase family, zinc-binding region signature. / Peptidase M16, C-terminal / Peptidase M16 inactive domain / Peptidase M16, N-terminal / Insulinase (Peptidase family M16) ...Peptidase M16, middle/third domain / Middle or third domain of peptidase_M16 / PQQ synthase PqqF-like, C-terminal lobe domain 4 / : / Peptidase M16, zinc-binding site / Insulinase family, zinc-binding region signature. / Peptidase M16, C-terminal / Peptidase M16 inactive domain / Peptidase M16, N-terminal / Insulinase (Peptidase family M16) / Metalloenzyme, LuxS/M16 peptidase-like / Insulin / Insulin family / Insulin-like / Insulin/IGF/Relaxin family / Insulin / insulin-like growth factor / relaxin family. / Insulin, conserved site / Insulin family signature. / Insulin-like superfamily
Similarity search - Domain/homology
Insulin / Insulin-degrading enzyme
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.4 Å
AuthorsMancl, J.M. / Liang, W.G. / Tang, W.J.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS) United States
CitationJournal: To be published
Title: Ensemble cryoEM reveals a substrate-induced shift in the conformational dynamics of human insulin degrading enzyme
Authors: Mancl, J.M. / Liang, W.G. / Wei, H. / Carragher, B. / Potter, C.S. / Tang, W.J.
History
DepositionAug 27, 2021Deposition site: RCSB / Processing site: RCSB
Revision 1.0Aug 31, 2022Provider: repository / Type: Initial release
Revision 1.1Oct 9, 2024Group: Data collection / Structure summary
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / em_admin / pdbx_entry_details / pdbx_modification_feature
Item: _em_admin.last_update

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Cysteine-free Insulin-degrading enzyme
B: Cysteine-free Insulin-degrading enzyme
a: Insulin A chain
b: Insulin B chain


Theoretical massNumber of molelcules
Total (without water)239,9394
Polymers239,9394
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area4720 Å2
ΔGint-14 kcal/mol
Surface area83510 Å2

-
Components

#1: Protein Cysteine-free Insulin-degrading enzyme / Abeta-degrading protease / Insulin protease / Insulinase / Insulysin


Mass: 117068.508 Da / Num. of mol.: 2
Mutation: C110L, C171S, C178A, 257V, C414L, C573N, C590S, C789S, C812A, C819A, C904S, C966S, C974S
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: IDE / Production host: Escherichia coli (E. coli) / References: UniProt: P14735, insulysin
#2: Protein/peptide Insulin A chain


Mass: 2383.698 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: INS / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: P01308
#3: Protein/peptide Insulin B chain


Mass: 3417.931 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: INS / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: P01308
Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeEntity IDParent-IDSource
1Cysteine-free Insulin-degrading enzyme in complex with Insulin A chain and Insulin B chainCOMPLEXall0RECOMBINANT
2Cysteine-free Insulin-degrading enzymeCOMPLEX#11RECOMBINANT
3Insulin A chain, Insulin B chainCOMPLEX#2-#31RECOMBINANT
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
12Homo sapiens (human)9606
23Homo sapiens (human)9606
Source (recombinant)
IDEntity assembly-IDOrganismNcbi tax-ID
12Escherichia coli (E. coli)562
23Saccharomyces cerevisiae (brewer's yeast)4932
Buffer solutionpH: 7.2
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationInstrument: SPOTITON / Cryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD
Image recordingElectron dose: 60 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.18.2_3874: / Classification: refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 304011 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00816003
ELECTRON MICROSCOPYf_angle_d1.19521643
ELECTRON MICROSCOPYf_dihedral_angle_d17.1742078
ELECTRON MICROSCOPYf_chiral_restr0.0652334
ELECTRON MICROSCOPYf_plane_restr0.0092797

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more